Citrus

Christoph Deppisch, Martin Maher

Version 2.7.7, 2018-09-18

citrus

I = - T 2
2. What's new In Citrus 2.72] . ..o oo e 3
2.1.SINCE CIIIUS 2.7.6. o o ottt ettt et e e 3
2.1.1. Hamerest MatChiersot 3
2.1.2. Wait fOor teSt aCtiOnttt 3
2.1.3. SETP/SCP SUPPOTT oot ettt ettt ettt ettt ettt i 3
2.1.4. JMS Topic durable subscribers i 3
2.1.5. Improved Http query param handling oo i 3
2.1.6. Validation matChers. ... 4
2.2.SINCE CIIIUS 2.7.5. o o ottt ettt ettt ettt et et e e 4
2.2.1. Message selector on non-XML payloads ...t 4
2.2.2.Send and receive zip archives. i 4
2.2.3. Support FTP store and retrieve file operations................cooiiiiiiiiinnnn. 4
224, BINATY INESSAZES . . oottt ittt ettt ettt ettt ettt 4
2.3.SINCE CIIIUS 2.7.4 . o oottt ettt e 5
230 JDBC SEIVEL ..ttt ittt it e e 5
2.3.2. ASYNC CONEAIINET ..ottt ettt 5
2.3.3. System/Env property functions.t 5
2.3.4. URL encode/decode fUNCHIONS . .. oot ottt e e e e e e et e 5
2.4.SINCE CIIIUS 2.7.3. o oottt ettt ettt ettt e 5
2.4.1. Ignore sections in plain teXt.ttt 5
2.4.2.Json schema validation 6
24.3. JUNIES SUPPOTIT . o oo vttt ettt ettt et ettt 6
244, RefaCtOTINg . . o oottt e 6

2. BUG I RS .. e 6

3 INTrOAUCTION ..ottt e e 7
R 0)73 i V4 =X 7
3.2, USAZE SCEIMATIOS. .« oottt ittt ittt ettt ettt ettt ettt 7

Y = 1) 10
4.1 USING MAVEIL .. oo ottt ittt ettt ettt ettt 10
4.1.1. Maven archetypettt 10
4.1.2. EXisting MaVen PrOJECTES . ..ottt t ittt ittt ettt ettt ittt eaaas 11
4.2.USING Gradleot e 13
4.2.1. Configurationoiiiiiiiii i e 13
422.Runwith Gradle e 14

4.3 USING AT .« .ttt et e e 14
4.3.1. PrecOnditiOnS. . ..ottt e 15

4.3.2. DOWNI0AA . . oo et et e 15

4.3.3. INStAllation . . . oottt e e 15

TR TS B 2 Tl 18
5.1. Writing test cases I XM L. . ..o vttt et et e et e 19
5.2. WTriting teSt CASES IMN JAVA . o o v vttt ettt et ettt et e e e e e i i 22
5.3.Java DSL teSt A@SIgMET . . . ottt ettt ettt et e e e e 22
5.4.7aVa DSL tBST FUNIIET . . . oottt t ettt e e e e e e e e et e e et 26
5.5. Designer/RUNNET INJECTIOM\ttt ettt et et et e e ettt iae e 27
5.6. Test CONteXt INJECTION . ..ottt ittt e ettt e e et e e ittt 28
5.7.Java DSL test DERAVIOTSo e 29
5.8 DESCIIPION. . ¢ v vttt ettt ettt e e et e e e e e 30
5.9 TSt ACHIONS . . vttt ettt ettt ettt e ettt e e e e e e e 30
5.10. FINally teSt SECHIOM . . o .\ v ettt ettt e et e e et e 31
5.11. Test meta INfOrmationt e 32

6. Test variables i e 34
6.1. Global variables 34
6.2. Create variables With CDATA i e e 35
6.3. Create variables With GroOVYoi ittt e e e i 36
6.4. Escaping variables eXPresSiOnttt e 37

80 S0 00 000 e (T PP 39
7L RUN WIth TESING.t et eans 39
7.2. UsSINg TeStNG DataProvIdersttt et e e et 41
7.3. RUN WIth JURNIES .. e et e e 42
74 RUN WIth JUNIA ... e et e et e 46
7.5, RUNNING XM L f0StS . o o ettt ettt et e e e e e e et e et e et it 48

8. CONTIGUIAtION . . .ottt ettt ettt e ettt e e e 51
8.1. Application environmMent SEttiNGSttt ittt 51
8.2. Application property file e 52
8.3. Spring XML application CONteXt. out ettt et ettt iae s 53
8.4. SPrINg Java CONTIE . ..ottt e e e 54

0. ENAPOINES . o e ettt ettt e e e e e e e e 56
9.1. Send messages With endpointsttt i e 57
9.2. Receive messages wWith endpointst i i 59
0.3, LOCAl INESSAZE STOTE . .« o v ittt ettt ettt e e et e e e e e e e e 61

10. Message validationoouuit et et e e e 63
10.1. XML message validationoouuintiiitin it e e 63

10.1.1. XML payload validationoouuiiitiii it e 63
10.1.2. XML header validation oottt e 64
10.2. Ignore XML €leIMEItSttt ittt ettt e e e et e 65
10.2.1. Customize XML parser and serializer.oouiuiiniiiiiine i 66
10.2.2. Groovy XML validation.ttt e 67

10.3. JSON message validationootitinr it i i e 69

10.4. Schema Validationottt e e e e e 74

10.4.1. Managing SChemias.ottt it e 74
10.4.2. Schema definition OVerrulingottt et eiiea e 76
10.4.3. XML schema validationo i 77
10.4.4. JSON schema validationcotttinii it i eiiaee e 83
10.4.5. JSON schema repoSIitOrieSv ettt ittt ettt iiee e eiiaaeans 84
10.4.6. JSON schema filtering and validation strategyouuiiiineeiiineeennnnnnn 84
10.5. XHTML message validation.outuunn et e et iiie e e 85
10.6. Plain text message validationttt e e 86
10.6.1. Whitespace CharaCtersttt ittt 87
10.6.2. IgNOTING TEXE PATTS . o o vttt ettt ettt et e e et e e it e ettt 88
10.6.3. Creating variables i e 89
10.7. Binary message validationuiiiiininnteii i e e 90
10.7.1. Stream message validationiiiiinn i i 90
10.7.2. Base64 message validationiiiiinntiiii i i 91
10.8. Gzip message validation.ttt e e e 92
10.9. Java DSL validation callbackst 93
10.10. Message validator TeGIStIYttt ittt et et e e et iae e iiiae s 95
10.11. Custom message Validatorsouttt ittt e 97
11 USINg XPath . . oot e e e 99
11.1. Manipulate with XPath. 99
11.2. Validate with XPath. 100
11.3. Extract variables with XPath i 103
11.4. XML namespaces in XPath i e e 104
11.5. Default namespaces in XPath i 106
12.USING JSONPAth . . .o e e 108
12.1. Manipulate with JSONPath i et 108
12.2. Validate with JSONPath e e et 110
12.3. Extract variables with JSONPath i e 112
12.4. Ignore with JSONPath o i e e et e 113
13, TeSE ACHIONS . o e ettt ettt ettt et et e ettt e 114
13.1. SENAING INESSAZES . . o v vttt ettt et e et e et e e e et e e e e et 114
132, RECEIVE IS A S . « v v vt ettt ettt et e et ettt e e ettt e e e e et e e e 121
13.2.1. Validate message payloadsooiiiiiniiin i e 124
13.2.2. Validate message headersttt et 126
13.2.3. MESSAZE SELECTOTS . . .\ ittt t ettt e et e e e 127
13.2.4. Groovy MarkupBuilder. e 129
13.3. Database aCtiONsottt 130
13.3.1. SQL update, insert, deletettt e 131
13.3.2. SO QUL .ottt e 132

13.3.3. Transaction ManaGeIMEIItottt ettt ettt tee e et iee et eiiae e eenneeans 136

13.3.4. Groovy SQL result set validationuiiiiinn i iiiaee e 137

13.3.5. Save result SEt Valuesttt e e 138
S 7 Y =T o P 139
S 70 T - 139
13.6. RECEIVE tIMEBOUL . . o\ttt ettt ettt et et e e e et e e e e e et 141
13,7 ECNO. . e 143
13,8, STOP tIIMIE o ettt et e e e e e e e 143
13.9. Create variablest e 145
13.10. Trace variables.ot e 147
13,10 TransSfOrIn . . . oot e e e e e 148
13.12. GroOVY SCrIPt @XECULION . « v\ ottt ettt ettt e e e et e e e e e e e e iee e iie e 151
13.13. Falling the teSt . oo vttt e e et e e e 154
13 04, IPUL . ..t 156
13015, L0Ad - .ttt 158
13.16. Purging JMS desStinatiOns. ovuutt ettt et e e et e e e i 159
13.17. Purging message channelsoiiiiiiin i i et 163
13.18. PUrging endpOintso oottt e e 168
13.19. ASSert fallure e 172
13.20. CatCh eXCEPIONS . ..o v ettt ettt e e e et e e e 173
13.21. Apache ANt buildo oo e 174
B] Vg 7] (0] 1<) 0 V4=) P 178
13,23, STOP TIIMBT . . oottt ettt et e et e e et e e e e e 180
13.24. CUStOM TSt ACHIOMIS . . o v e ettt ettt et et e e ettt e et e e e 181

I =) 401 0] =T TP 184
15. Test DEaVIOTS ..ottt e e 188
15, BERAVIOT (Y POS o ettt ettt ettt et e e e e 189
T 00 4L =10 4) PP 190
16.1. SEqUENTIAL . ..ot 190
16.2. CONAItIONAL . ..ottt e e 191
16.3. Paralle]o 192
T =) = 1 194
16.5. Repeat UNTIL tIUettt et e e et e e 196
16.6. Repeat on error UNtil true oot e e e 198
0 1 02 = P 200
TR T N3 7 o (o 203
16.9. Wit . . .t 205

16.9.1. HEtp CONAItION . . . o oottt et e e et e et e 205

16.9.2. File CONAITION . ..ottt ettt ettt et e e i eas 206

16.9.3. MeSSAZe CONAItION . . . vttt e ettt ettt et e e e i ie e iie e iiaeeeans 206

16.9.4. ACtION CONAITION . . . o\ttt ettt e et e it iiae e ean 207

16.10. CUSEOIM COMEAII BT S . « v v vttt ettt ettt et e et e et e et e et e et et e e e 208

R 1 S0 0 0 o 211

17.0. JMS @NAPOINES. . o o ettt ettt e e e e e e 211
17.2. JMS synchronous eNdpOintsun ettt ittt et 213
173, JMS LOPICS .« v ot ettt et e et e e e e e e e e e e e e 216
17.3.1. JMS tOpiC SUDSCIIDET . ..ottt e e e 217
17.4. JMS topic durable SUbSCIIpPtionoiuiii i i e 218
17.5. JMS mMesSage headersottt e 218
17.6. Dynamic destination NaIMesttt ettt et iie et 219
17.7.SOAP OVET VS ..ottt 220
18, HTTP REST SUPPOIT . . . ettt ettt e e e e e e e e e e et e et e e et eae e 221
18.1. HTTP REST CHENT . . . oo ettt et 221
18.2. HTTP CLieNt INTEICEPLOTS & o v vttt ettt ettt e ettt e et e e e e i e i e 227
18.3. HTTP REST SEIVET . .ottt ettt e ettt et 227
B 5 1 T T =) P 231
18.5. HTTP QUEIY PATaIMeIeY ettt ettt e et e e e e e e e e e e et e ettt ie e eae s 234
18.6. HTTP SerVer INTeICEPIOTS. - . o ettt ettt et e e et e e e e e e e e et eie e neeens 236
18.7. HTTP form urlencoded dataouiuiniiiniie i et 237
18.8. HTTP error handling.ttt et i e 238
18.9. HTTP client basic authentication.ooiuiiniiiiiin i i, 240
18.10. HTTP server basic authenticationoouuiniiiiiinttiiiin i, 242
18.11. HTTP COOKIES ..o v vttt ettt et e e et e e et e e ettt 243
18.12. HTTP GZIP COMPIESSION . ¢ v v vt ettt ettt tee ettt e e e et ee e e e iee e e iiaae e 248
18.13. HTTP serviet fllterso oottt e et it et 250
18.14. HTTP servlet context CUSTOMIZAtION oottt ettt e e iiee e e 251
19. WD SOCKEt SUPPOTt . . vttt ettt ettt et e e et e et e e e et 253
19.1. WebSO0CKet CLIENTttt e e e et e e e e e 253
19.2. WebSocket server endpOointsuetutne ettt 255
19.3. WebSocCKket Readers oot e e 256
20. SOAP WD SOIVICES ..ottt ittt ettt et e e et e et e e 259
20.1. SOAP CLIENt .ottt 259
20.2. SOAP ClIeNt INTEICEPIOTS . .ottt e ettt et e et e e e et e e e e e ie e iiee e iianeeas 261
20.3. SOADP SBI VO . . . ottt ittt e e e 262
20.4. SOAP SeNd QN FECEIVEottt t ettt ettt e et e e e e e 264
20.5. SOAP RARTS . . o vttt ettt e e e e 266
20.6. SOAP HTTP mime headersooioiuirittii ittt e ea 269
20.7. SOAP Envelope handlingttt et it 270
20.8. SOAP SeIVer INTEICEPIOTS . . v vttt ettt et ettt e e e e et e e e ettt 271
20.9. SOAP 1.2 . i 272
20.10. SOAP faults . .o oottt 273
20.11. Send SOAP faultso ottt e 273

20.12. Receive SOAP faUults .. ovv vttt e e e e e e 275

20.13. Multiple SOAP fault detailsoooitt i e e e 281
20.14. Send HTTP error codes With SOAP ittt i e e 284
20.15. SOAP attaChment SUPPOTt . ..o v v ettt et e e i iiae e ea 285
20.16. Send SOAP attaChmentsottt e et 285
20.17. Receive SOAP attaChmentsttt et et e e iiae e ea 286
20.18. SOAP MTOM SUPPOTT . . vttt ettt et et et e e e e e e e et ettt e ea e 287
20.19. SOAP client basic authentication.ouuutint it et eiiae e 290
20.20. SOAP server basic authentiCationouuuintt et et eiiie e eann 292
20.21. WS-AdAresSing SUPPOTLT . ..o vttt et ettt et e et e e e et e et e ie et iae e eianeeans 293
20.22. SOAP client fork mode oo e 295
20.23. SOAP servlet context CUStOMIZAtIONo v vttt et iie e e e 296
2 R Sl D1 0 0) o PP 300
2 0 O 2) 4L PP 300
21.1.1. FTP client COMMANASttt ittt ettt e e e e e e e iee e iae e eennns 301

2 0 () = i1 (= 302
21. 1.3 Retrieve fIles . . oot 303
2. LA LISt IS oottt 305

A /0 1 ST = 7) AP 306
21.2.1. FTP SErver COMIMAIASttt et e ttee e et ae e e ean et eeneeeeennneeeennns 308
21.2.2. StOTE IleS . . ettt e 309
21.2.3. Retrieve flles . ..ot e 310
21 2.4, LISt IS oot 311
22, SETP/SCP SUPPOTE. . . ettt ettt e e e e e ettt e e et e e e e et e e e e e e e e e 313
22. 1. SET P ClieNt . .ottt e e e e 313
22.1.1. SFTP client COMIMANASottt e et ettt e e e e e e e iee e iiae e ennns 314
22,12, StOTE IleS . .ttt e 315
22.1.3. Retrieve flles . . oot 316
22 A, LISt IS oottt 318
22.2. SETP SOIVRT . . ettt ittt e et et e e e e e e e e e e e 320
22.2.1. SFTP Server COMIMANASttt ettt ettt ae e e ae et iae e iaeeeennns 321
22.2.2. StOTE IleS . .ttt e 322
22.2.3. Retrieve flles . ..o e 323
22, 2.4, LISt IS oottt 324
22.3. SCP Ll BNt . . ettt e e 325
22.3.1. StOTE IleS . .ttt e 327
22.3.2. Retrieve flles . ..o 328
23. Message Channel SUPPOTTttt e et e e e e 330
23.1. Channel eNdPOIntottt et e e 330
23.2. Synchronous channel endpointsttt et e 332
23.3. Message selectors on channels. i e e 334

23.4. Payload matching Message SeleCtorovitttn ettt e iiae e ean 334

23.5. Root QName Message SeleCtOrttt et i e 335

23.6. Xpath Message SeleCtorttt e i e 336
23.7. JsonPath Message SeleCtOr.ottt e e e e 337
S | L] o) o) G 339
24, 1. WIIte f10eS ..ot e 339
24.2. Read fI1ES . . oot e 340
25. Apache Camel SUPPOTtttt et e e et e e e 342
25.1. Camel eNAPOINtttt e 342
25.2. Synchronous Camel endpoint.ottt i e e 345
25.3. Camel exchange headersttt e e e 346
25.4. Camel exception handlingooii it i et e 346
25.5. Camel context handlingt e e e 348
25.6. Camel route @CtIONS. . . oo\ttt ettt e e 349
25.7. Camel controlbus aCtionS.o v vttt e 352
26. VEert.X eVENt DUS SUPPOTL ..ottt ittt ittt et e e e e e e e 355
26.1. Vert.X eNAPOINt. . ..ottt e e 355
26.2. Synchronous Vert.X eNdpOintttt et 357
26.3. Vert. X INStancCe factoryottt et e e 358
27, MLl SUPPOTE & e ettt ettt e e e e e e e e 360
27. 1. Madl ClieNt . ..o e 361
2. 2. MLl SBT VT ..ttt ettt e e 364
28, ArqUILLIAN SUPPOT. . ottt t ettt e et e e et e e e 368
28.1. Citrus Arquillian eXtenSIONo vttt ettt et e 368
28.2. Client SIAE teSTIIG. . o oottt ettt ettt ettt e et e e e e et 369
28.3. Container Side teStIMgo vttt ittt e e e 371
28.4. TESETUIIIETS . . oottt ettt et e et et e e e e e e e e et e et e et et e e e 373
29, DOCKET SUPPOT. o vttt ettt ettt e e et e e e e e e e e 377
29.1. DOCKET CLIBINE . . o ottt e e e e e 377
29.2. DOCKET COMMATIAS . . ot vttt ettt et ettt e e et e e e e et e e e e e et iee e e 378
30. KUDEINETES SUPPOTIT ..ottt ettt et ettt e e et e e et e e e e et e e e iae e eennns 383
30.1. Kubernetes ClIent.ttt ettt e et e 383
30.2. Kubernetes commands in XMLttt e e 385
30.3. Kubernetes commands N JaVa.ttt ettt i et 386
30.4. InfO COMIMANA . ..ottt et e e et e e e e 388
1 e T I] B =210 10 oo P 389
30.6. List NOdEeS and NaAIMESPACES . . . v v v vttt et ettt ettt ee ettt ea e e e 390
30.7. GELTESOUICES .. e ottt ettt ettt e e e e e e e e e e e e e e e et e et e ettt 390
30.8. Create TESOUICES. .« v o ettt ettt et ettt et et e e e e e e e et e e e 392
30.9. DELETE TESOUTCES .+« vt vttt ettt ettt e e e e et e e e e ettt e e e e et e e e e iee e e 395
30.10. WaAtCR FESOUTCES . ..ottt t ettt ettt e e et e e e e et e e ettt ettt 395

30.11. Kubernetes mMesSagingttt ettt ittt e et 396

3. SSH SUP PO . .ttt e e e e e 398

311 SSH CIENt ..ttt et e 399
302, S SH SO Ve . o vttt e e e e e 401
32, RMI SUPPOTT . .ttt ettt e e e e e e e e e e e 404
32.1. RMICHIENL. . . oottt 405
32,2 R SO VT . o vttt e e e e e 407
R3S TR 10 G0 0] 010) PP 410
331 JMX CHIENL. . oottt 411
R3S T 1\ O QST 13 414
34. Cucumber BDD SUPPOTT . . . vttt ettt ettt ettt e e e 419
34.1. Cucumber INtegrationuuutt ittt et e 420
34.2. CUCUMDBET XML STEPS & ottt tti et ettt et e ettt e et e e e e e e e i 423
34.3. Cucumber SPring SUPPOLt . ..ttt ittt et e et e e e et e e ee e i 426
34.4. Citrus step definitions.ottt e 428
34,5, VAT able STePS . oottt et e e e 430
34.6. MESSAZINE STOPS + « v vttt ettt et ettt e e e et e e e e e e e e e 431
34.7. NAMEA INESSAZES .« v o vt ettt et ettt e e ettt e e ettt e e e e et e e e e 432
34.8. MeSSaAZe CreatOr SO PS . « o et ettt ettt et e e e e e e e e e e e 433
34.9. ECNO StOPS vttt e e 435
1 7] (=] o I3 (=3 o 1P 435
R 7 0 I R 5 L 1<) 01 436
34,1 2. DOCKET SIS & vt vttt et ettt e ettt e e e e e 437
34.13. SEIEIMIUIN SEEPS .« vt ittt ettt ettt e e ettt e et e e e e 438
35, ZOOKEEPET SUPPOTE . .ttt t ettt ettt et e e e e et e e e et e 442
35.1. ZOOKEEPET CLIEINL.ottt e et e e e e e e 442
35.2. ZOOKeEePEer COMIMANAS ..ot v ittt ettt ettt ettt ie ettt ie e et iee e iiae e 443
36. SPring ReStAOCS SUPPOTIT & . vttt ettt ettt ettt e e e e e e e e e ee et ia e iiae e eennns 448
36.1. Spring Restdocs USING HItPo ovvi it e e et 448
36.2. Spring Restdocs USING SOAPttt e e et 451
36.3. Spring Restdocs in Java DSLot e 452
37. SELENIUIM SUPPOTT . .\ttt t ettt ettt ettt e e et e e ettt e e e e et ee e e i iae e eennns 455
37.1. Selenium DrOWSETo 455
37.2. Selenium aCtiONSo vttt 456
37.3. StArt/StOP DIOWSET . . .ottt e e 460
374 FIN . .. e 461
375, Gl . et 462
3.6, HOVRT ottt e e e e e e 463
37.7. FOrM INPUL QCHIOIIS . . vt ettt ettt et ettt et e e et e e e e e e e e iee e iiaa e 463
37.8. PAZE ACHIOIIS. . vttt t ettt e e e e e 464
37.9. Page validationottt e e 465

3700, Waalt. . . 467

00 I R A - V4 = =P 467

37.12. WINAOW ACHIONS . .« o et ettt ettt e et ettt ettt e et e e et et 468
3708, ALt ..t 468
37.14. Make SCreensShOtottt 469
37.15. Clear DrOWSer CaChe e e 470
38, JDBC SUPPOTT. . ettt et et e e e e e e e e 471
38.1. The Citrus-JDBC-DIIVeT.ottt ettt et e et e ettt 471
38.2. The Citrus-JDBC-SEIVET. . . .\ttt ettt ettt e et e et e e et 472
38.2.1. TranSaACIONS . ..ottt ettt ettt e ettt e e e e et e 474
38.2.2. Prepared StateIMENLSottt ettt ettt e e e 475
38.2.3. Callable statements / Stored ProCedures.ovuur et etie et iiaeeinneeann 476
38.2.4. ConfigUIationttt e e e 476
38.3. JADCM S S . . vt vttt ettt e e e e 478
38.3. 1. DataSet PATSINE. . . ot ettt et et e e e e e e 480

39. Dynamic endpoint COMPONENTSo vttt et ettt e ettt ee e et ee et iaae e ineeeennns 482
40. ENAPOINt @0apter. . oottt ettt e e 488
40.1. Empty response endpoint adapteroouuintttiiint e 488
40.2. Static response endpoint adapterouiiii i e 488
40.3. Request dispatching endpoint adapter.uurtteiin et 490
40.4. Channel endpoint adapter.ttt e et 491
40.5. JMS endpoint @daPler. . ..ottt ittt et e e e e e 491
I S q 100 PP 493
O R o0 o U P 493
A1.2. SUDSITING() -« o v v ettt et e e e e e e e e 494
41.3. StrinNgLengthi) oottt e 495
A1.4.ranslate() .. vv e e 495
471.5. SUbSIrINGBefOre() oottt e 496
41.6. SUDSITINGATTET() . . oottt e et e e e 496
A1.7.TOUNAQ . oottt e e e 496
A1.8. F100T() o vet ettt e 497
41.9. COIINGO) . . o e ettt e e 497
41.10. randomNUumMDber()ttt e 497
41.171. randomMStIING() . . o oo e ettt et e e e e 498
41.12. randomEnumValue()ottt e 498
41.13. currentDate() . ..o e ittt e 499

L 0] 1= O 1= (PP 500
A1.15. JOWETCASE) .+« v vvte ettt et e et et ettt e e 500
4106, AVETAZE() « vttt ettt et e e e e e e e e e e e e 500
4117, MINIMUINIO) « o v e e e ettt ettt e e et e e e 501
41.18. MAKIIMUINI() .« v v vttt et e ettt ettt et e e e e e 501

4109, SUIMO . v v et ettt et e e e e e 501

471.20. @DSOIULE0) . v v v vttt et e e e e 501

41.21. MaPValUC() . .o vttt e e 501
41.22. TandomUUID() . ..ottt ittt et e e e e e et e e e e 502
41.23. enCOAEBASEO4() ..ottt et e 502
41.24. deCodeBaseB4(). . . . oottt et e e 502
41.25. €SCAPEXIMI() . « o v ittt ettt e e e 503
471.26. CAAtAaSECHION() .« . . v vt ettt ettt et e e e 503
41.27. digestAUuthHeader().o oottt e e e e 503
471.28. 10CalHOSTAAATESS() . o vt vv ettt ettt ettt e et e e ettt e e 504
41.29. ChangeDate()ottt e et e e 504
41.30. TeAAFIIE() . . o oottt e e 505
L G R 4 LT V=T) PP 505
A1.32. XPAtI() .« oot e 506
41.33. JSONPath(). . ..ot e 507
41.34. urlEncode/urIDecode()unitini et e 508
41.35. SYStEIMPTIOPEITY() . . . ot ettt ettt e e e e e e e e e 508
A1.36. BIIV() .« ettt et e e e e e e e e e e e e 508
42. Validation MatCher e e e e 510
/2 T ¥4 4 o) 1 S PP 511
42.2. matchesXml()t e 512
42.3. equAlSIGNOTECASE() .ottt ettt ettt e e e 513
A2.4. CONTAINS() . o v v ettt ettt ettt e e et e e e e e e e e e 513
42.5. StartSWIth() . ..ot e 513
42.6. eNASWIth() . . o oot e 513
42.7. MAtCNES() . o oot e 513
42.8. matchesDatePattern()ottt ittt et e e 514
42.9. 1SNUIMDET() .ottt e et e e e e 514
42.10. IoWerTRAn()ttt e e 514
42.171. greaterThan()o o oot e e 514
4212, ISWEEKAAY() .+ vt vttt ettt ettt e e e e e e e 514
42.13.variable() . ..o o e 515
42,14, dateRANGE() .« o v ittt 515
42.15. @SSEItTRAL() . o« v ottt ittt e 516
42.16. 18NOTENEWLINE() . ..ottt ettt e et e e et e 517
/20 1) S PP 518
42.18. trimAIIWRIteSPACES() « .. oottt ittt ittt et e et e 518
Z ST DT U= 1o b Cotu () o U (O 519
43.1. XML data diCtiOonaries. . ..ottt ittt ettt et e e e e e e e e 519
43.2. JSON data diCtiONATIES . ..ttt ittt et e et e e e e e et i ie e i iaeeeas 521
43.3. DICHONATY SCOPES. & v vttt te et ettt et ettt e e e et e e e e et e e e et 522

43.4. Path MapPPing Strategies. . oottt ittt ittt et e et e et 523

g T = (ot (6) o~ 525

44.1. DefiNe teSt ACTOTSottt ettt ettt ettt e e et 525
44.2. LINK EEST @CTOTS . . . vttt ettt ettt ettt et ettt e e e e et e 525
44.3. DiSable teSt ACTOTS . . .ottt t ettt e 526
45. TeSt SUILE ACTIOMS . . . oottt ettt ettt et et e e e e et ettt 527
45.1. BeIOTe SUITe . . . oot e 527
45.2. ATter SUITE . . oottt e 530
45,3, BeIOTE 1St o oottt e 533
N 1= g (=] P 536
46. FINAllY SECHION . ..ottt ettt e e e et e e et e e e e 539
47. Customize meta INfOrmation it 542
48. Tracing inCOMING/OUtZOINEG IMESSAZES . v v vttt ettt e ettt ie e et iee et iiaae s 544
49. Reporting and teSt TESULLSttt ettt et 546
49.1. ConS0le I0gEINg. . . . oottt e 546
49.2. JUNIE FEPOTES & o vttt ettt ettt ettt e ettt e e e et e e e ettt e e e te e i 547
S T L 8 0) 0T) P 547
50, SAI LS o ettt e e e e 549
50.1. The FlightBooKIng samplet e e iiae e ea 549
50.1.0. The USE CASE. . .o ettt ettt e et e e et e e e ettt 550
50.1.2. Configure the simulated SYSteIMSttt e e 551
50.1.3. Configure the Http adaptercooiiiii i e e 553
50.1.4. The teSt CASE . ..ottt ittt et ettt e ettt e 554

o 2N 0 13 4 o 1 - 560
Changes IN CIIIUS 2.7 ...ttt ittt et e et e e et e e et e e e i i eas 560
JAVA 8 . e 560
KUDEINETeS SUPPOTT . . oottt ettt et ettt ettt e e e e e e e et 560
SElENIUIM SUPPOTT .« . ettt ettt et et e et et e e e e e e i ee e i 560
Environment based before/after suite............ .. o i 560
WsAddressing header customizationuiuiiiiiineeiiie e 561
JsonPath data diCtionaryouunit it e it i e 561
Java DSL test DehaVIOr.t e 561
AULO SElECt IMNESSAZE Ty P .+ vttt ettt ettt e ettt e e e e 561
Default CUCUIMDET STEPS ...ttt ettt ettt ettt e e et e e et 561
Database transaction handling i e e 561
ENVIrONmMent Settings.ttt e e 562
HEEP COOKIE SUPPOTT . .ottt ettt et ettt et e e e e e e e et 562

File resource eNCOAINGotunniittit e et et et 562
Changes IN CIIIUS 2.6 . ..ottt ettt et e e e e et e e e iiae e eas 562
GZIP COMPTIESSION . . o et ettt et ettt e e et e e e e et e e e e e e e et ee e e iaa e iae e eennns 562
Custom servlet flltersot e 563

Escape test variable SYNtaxoitttirt i e 563

Configurable XML serializercouuuiiiiuit i et 563

LOCAl MESSAZE STOTE . . ottt t ettt ettt et e e e e e e e e e e 563
Wait message CONAITIONttt et e e ia e iiaaeeans 563
Xpath and JsonPath FUNCHON ...t e et as 563
Static response adapter variables SUPPOIt.ttt i e 563
CUCUMDBET BDD SUPPOTL. « v vt ettt ettt et e e et e e e e et e e e e e 564
YA 0T0) (=T 0 1= W D1) 010) o S 564
SPring ReStAOCS SUPPOTT .« ..ottt e ettt ettt e e e e e e e i 564
Hamcrest matcher CONditionsSt e 564
SOAP Java DS . .ottt e 564
L2 - (1 (0) 0 2 564
Changes IN CIIIUS 2.5 ...ttt ettt et e e et e e et et iae e eas 565
Hamcrest matCher SUPPOTtttt e et 565
Binary base64 message validatoroutttunnt it 565
R SUPPOTT . . ottt et e e e et e e e e e e e e e e 565
G101 0 10) o P 566
RESOUICE INJECTION ..ttt ettt e ettt e et e e et e e e i 566
Http x-www-form-urlencoded message validatort iiiinneennnn. 566
Date range validation matCherttt it 566
Read file resource fUNCHION e e 566
B L) o0 A 0 4 =) 566
Upgrade t0 Vert.X 3.2.0 ...ttt et e e 566
Changes IN CIIIUS 2.4 . ..ottt ettt et e e et e e et ettt eas 567
DOCKET SUPPOTT vttt ettt ettt e ettt e e ettt e e et e e e e e 567
5 L0 OISy N U 0 (o) U 567
WaIt teSt ACHION . . o v vttt ettt e 567
CamEl ACHIOMIS . . . oottt ettt 567
Purge endpoints aCtiOnttt et e 567
Release to Maven Centraluuniiii e 567
Changes IN CIIIUS 2.3 ...ttt et et e e e e e ettt i e ea 568
Test runner and teSt AeSIZINETttt ittt et ittt 568
WeEDSOCKET SUPPOTT ...ttt ettt et et e e et e e 568
JSONPATR SUPPOTt . ..ttt ettt e ettt et e e e e e e 568
Customize message Validators.ovue ettt e 568
LIDrary UPGradesottt ettt et ettt e e 569
Upgrade from CItIUS 2.2ottt et et e e et e et i 569
BUG KOS . . .ttt e 569
Changes IN CIIIUS 2.2 ...ttt ettt et et e e e e e ettt iae e eas 570
ArqUILLIAN SUPPOTT ottt ettt ettt et e e e e e 570
JUNIE SU P POTE .« ettt ettt et e et e e e e e e e e 570

StArt/STOP SEIVEr ACTIOM . . . vttt ittt ettt et et e e e e e e e e e i 570

CItTUS ANt TASKS vt ottt ettt e e e e e e e e e 570

BUG KOS . ..ttt e 570
Changes N CIIIUS 2.1 ...ttt ettt et e e e e e et ettt iiae e eas 570
SOAP MTOM SUPPOTT . . ettt ettt e e e e e e e e e e e e ettt e 571
SOAP envelope handling.ttt e e et 571
SOAP 1.2 MeSSage faCtOrY . . oo vttt ettt e et e e e 571
TestNG data provider handlingttt e et en 571
Mail MeSSaZe NAIMESPACE . . oot v ettt ettt ettt e et et e e e e ee e et iaa e ine e 571
SSh MESSAZE NAIMESPACE . . . v vttt e ettt ettt et e et et e e e e ee e e iaa e iaeeeennns 571
Changes IN CITIUS 2.0 ...ttt ettt e e e e i eaas 572
L2 - (1 (0) 0 2 572
SPring frameWOorK 4.Xt e 573
o] D1 00) o PP 573
Functions with test CONtEXt ACCESSttt 573
Validation matcher with test CONteXt aCCeSSttt 573
Message listener with test CONTEXt ACCESS . . .ot v v ittt ittt iiee i ennns 574
SOAP OVET M S . . e e 574
Multiple SOAP attaChmentsttt e e e 574
Multiple SOAP XML header fragmentsouiiiininn ittt 574
Create variable validation matcher i 574
New configuration COMPONEINTSttt ettt ettt e e e ee e iae e iaeeeennns 574
Before/after suite COMPONENTSttt ettt et iee e eennns 575

CItrus JMS mOAULEot e et e 575

Copyright © 2018 ConSol Software GmbH
Version: 2.7.7

CITRUSE

Chapter 1. Preface

Integration testing can be very hard, especially when there is no sufficient tool support. Unit testing
is flavored with fantastic tools and APIs like JUnit, TestNG, EasyMock, Mockito and so on. These
tools support you in writing automated tests. A tester who is in charge of integration testing may
lack of tool support for automated testing especially when it comes to simulate messaging
interfaces.

In a typical enterprise application scenario the test team has to deal with different messaging
interfaces and various transport protocols. Without sufficient tool support the automated
integration testing of message-based interactions between interface partners is exhausting and
sometimes barely possible.

The tester is forced to simulate several interface partners in an end-to-end integration test. The first
thing that comes to our mind is manual testing. No doubt manual testing is fast. In long term
perspective manual testing is time consuming and causes severe problems regarding
maintainability as they are error prone and not repeatable.

The Citrus framework gives a complete test automation tool for integration testing of enterprise
applications. You can test your message interfaces to other applications as client and server. Every
time a code change applies all automated Citrus tests ensure the stability of interfaces and message
communication.

Regression testing and continuous integration is very easy as Citrus fits into your build lifecycle as
usual Java unit test. You can use Citrus with JUnit or TestNG in order to integrate with your
application build.

With powerful validation capabilities for various message formats like XML, CSV or JSON Citrus is
designed to provide fully automated integration tests for end-to-end use cases. Citrus effectively
composes complex messaging use cases with response generation, error simulation, database
interaction and more.

This documentation provides a reference guide to all features of the Citrus test framework. It gives
a detailed picture of effective integration testing with automated integration test environments.
Since this document is considered to be under construction, please do not hesitate to give any
comments or requests to us using our user or support mailing lists.

Chapter 2. What’s new in Citrus 2.7?!

We have the following features included in the box.

2.1. Since Citrus 2.7.6

2.1.1. Hamcrest matchers

We have added new Hamcrest matcher support in XML. This is isOne0f and isIn as well as closeTo.
All implementations are now available in XML when using @assertThat()@ validation expressions.
Read more about it in section matcher-assert-that.

2.1.2. Wait for test action

The wait action is able to wait for a condition to pass during a test case. Up to now you were able to
wait for Http URL to return a status code, a file to be present and a message to arrive. A new
condition implementation enables you to wait for another test action to perform successfully. In
case of error or time delay in the test action the condition will wait until the action is finished. This
enables you to wait for Docker images to start, JMS messages to arrive and many more.

Read more about it in sections wait-for and wait-for-action.

2.1.3. SFTP/SCP support

The FTP endpoints (client/server) in Citrus were enhanced to also handle SFTP and SCP secure file
transfer. The new support results in new client and server components for SFTP and SCP so you can
choose how the files should be sent/received to/from the server.

Read more about it in sections FTP and SFTP/SCP.

2.1.4. JMS Topic durable subscribers

The Citrus JMS topic client is now able to use durable subscriptions and/or to start and reuse the
subscription throughout the whole test suite. The topic subscription is then started at the very
beginning and incoming events are stored to a local in memory cache. This mechanism is used to
not loose any events that are triggered before the test case is receiving the messages from that JMS
topic.

Read more about it in section JMS topics and JMS durable subscriber.

2.1.5. Improved Http query param handling

Http clients and servers are able to add query parameter to a GET Http URL. The handling of those
parameters has significantly changed in this release in order to simplify query parameter support
in Citrus. You can now validate a sub set of query parameters and you are now able to use
validation matchers and @ignore@ expressions when validating query parameters on the server.

Read more about it in section Http support.

#matcher-assert-that
#containers-wait
#containers-wait-action
#ftp
#sftp
#jms-topic-subscriber
#jms-topic-durable-subscription
#http

2.1.6. Validation matchers

We have added some new validation matcher implementations ignoreNewLine, trim and
trimA11Whitespace.

Read more about it in section ignore-new-line, trim and trim-all-whitespace.

2.2. Since Citrus 2.7.5

2.2.1. Message selector on non-XML payloads

Citrus has always been able to select messages on a queue or channel in a receive test action in
order to pick a message of matching headers and or payload contents from a list of inbound
messages. This enabled us to perform parallel testing and in addition to that we are able to realize
test scenarios where multiple messages arrive unordered at the same time.

The message selector processing has been enhnaced with JsonPath support as well as validation
matcher conditions. So you can filter messages of certain nature based on non XML payloads, too.

Read more about message selectors in message-selector and message-channel-selector.

2.2.2. Send and receive zip archives

Citrus provides a special message implementation that automatically adds the payload in form of
one to many files and directories to a zip archive. The final zipped content is then provided as
binary message payload. This makes it very easy to send and receive zipped files and directories
within Citrus.

2.2.3. Support FTP store and retrieve file operations

The FTP support has been rewritten to a certain extend in this release. This is because the former
implementation has been too close to the FTP protocol. The new implementation is much more
comfortable when it comes to store and retrieve files on a FTP server. Also you can now check on a
server side that files are pushed or retrieved via client interaction.

This new FTP API is backward compatible to former tests but you should definitely have a look at
the new capabilities in FTP support. Check out the new stuff in chapter ftp.

2.2.4. Binary messages

Handling of binary message content has been possible in Citrus. We have had some issues though
when using non standard binary Content-Type headers in Http communication. The binary content
was then treated as String content obviously corrupting the binary content while processing. Also
the Http client has not been able to retrieve binary message content from the server in order to
validate the binary streams. All issues are fixed with this release and in combination with extended
binary message content utilities we expand the framework to handle binary content on client and
server side.

To mention only one of these enhancements we now have a binary message stream validator that is

#matcher-ignore-new-line
#matcher-trim
#matcher-trim-all-whitespace
#message-selectors
#message-channel-selector
#ftp

able to compare two input streams of binary content. See chapter binary-message-validation for
details.

2.3. Since Citrus 2.7.4

2.3.1. JDBC server

Preparing databases for testing can be hard times. Creating all tables and preparing the test data
with all constraints and data integrity is often a full time job and very exhausting. Instead of
preparing a real database would’nt it be nice to just mock the database queries with proper result
set generation just in time within the test? But at the same time we need to really use JDBC to
connect and retrieve the data from a JDBC mock server.

This is now possible with the new JDBC server integration in Citrus. You can receive incoming SQL
statements (INSERT, UPDATE, SELECT, DELETE, ...) and respond with a proper data set and/or rows
updated result. This enables us to test the data access in a database persistence layer without
having to actually create the tables and data needed for the test scenario.

Read about it in chapter JDBC server.

2.3.2. Async container

Sometimes it is good to execute test actions in parallel so you can do things simultaneously in a test
case. In some cases it is just to execute a single test action in parallel to the rest of the test. When
using send operations you already could have used fork="true" option on that test action. The async
test action container provides such functionality for all other test actions, too. Just add a test action
to the async container and the action is executed in a separate thread. The test case is not blocked
with that action execution and immediately executes the next action in place.

Read about it in chapter Async.

2.3.3. System/Env property functions

There are new functions available to access System properties and environment settings. This
enables you to resolve property values in test cases at runtime. See how to use this functions in
chapter functions.

2.3.4. URL encode/decode functions

Two new functions enable you to URL encode/decode a String with proper URL escaping. See how
to use this functions in chapter functions.

2.4. Since Citrus 2.7.3

2.4.1. Ignore sections in plain text

Plain text message validation is usually based on a complete String equals comparison. With latest
release we added the possibility to ignore some sections with well known @ignore@ keyword

#binary-message-validation
#jdbc
#containers-async
#functions
#functions

placeholder. The message validator will automatically ignore words or character sections based on
that. Read more about this in chapter plain text message validation.

Also possible is the extraction of sections as new test variables when using the @variable()@
matcher in the plain text message content.

2.4.2. Json schema validation

When dealing with Json message content the latest release allows adding of schema validation. The
Json structure is validated with proper schema as of Open API (Swagger) schema rules. As usual the
available schema files are defined in a schema repository in the project configuration. Read more
about this in chapter json schema validation.

2.4.3. JUnitS5 support

With this release you are able to integrate Citrus with JUnit5 the new generation of the famous unit
testing framework. We provide a Citrus JUnit5 extension that can do the trick. Read more about this
in chapter run with JUnit5.

2.4.4. Refactoring

Deprecated APIs and classes that coexisted a long time are now removed. If your project is using on
of these deprecated classes you may run into compile time errors. Please have a look at the Citrus
API JavaDocs and documentation in order to find out how to use the new APIs and classes that
replaced the old deprecated stuff.

2.5. Bugfixes

Bugs are part of our software developers world and fixing them is part of your daily business, too.
Finding and solving issues makes Citrus better every day. For a detailed listing of all bugfixes please
refer to the complete changes log of each release.

#plain-text-message-validation
#json-schema-validation
#run-with-junit5
http://www.citrusframework.org/changes-report.html

Chapter 3. Introduction

Nowadays enterprise applications usually communicate with different partners over loosely
coupled messaging interfaces. The interaction and the interface contract needs to be tested in
integration testing.

In a typical integration test scenario we need to simulate the communication partners over various
transports. How can we test use case scenarios that include several interface partners interacting
with each other? How can somebody ensure that the software components work correctly
regarding the interface contract? How can somebody run integration test cases in an automated
reproducible way? Citrus tries to answer these questions!

3.1. Overview

Citrus aims to strongly support you in simulating interface partners across different messaging
transports. You can easily produce and consume messages with a wide range of protocols like HTTP,
JMS, TCP/IP, FTP, SMTP and more. The framework is able to both act as a client and server. In each
communication step Citrus is able to validate message contents towards syntax and semantics.

In addition to that the Citrus offers a wide range of test actions to take control of the process flow
during a test (e.g. iterations, system availability checks, database connectivity, parallelism, delaying,
error simulation, scripting and many more).

The basic goal in Citrus test cases is to describe a whole use case scenario including several
interface partners that exchange many messages with each other. The composition of complex
message flows in a single test case with several test steps is one of the major features in Citrus.

The test case description is either done in XML or Java and can be executed multiple times as
automated integration test. With JUnit and TestNG integration Citrus can easily be integrated into
your build lifecycle process. During a test Citrus simulates all surrounding interface partners (client
or server) without any coding effort. With easy definition of expected message content (header and
payload) for XML, CSV, SOAP, JSON or plaintext messages Citrus is able to validate the incoming data
towards syntax and semantics.

3.2. Usage scenarios

If you are in charge of an enterprise application in a message based solution with message
interfaces to other software components you should use Citrus. In case your project interacts with
other software over different messaging transports and in case you need to simulate these interface
partners on client or server side you should use Citrus. In case you need to continuously check the
software stability not only on a unit testing basis but also in an end-to-end integration scenario you
should use Citrus. Bug fixing, release or regression testing is very easy with Citrus. In case you are
struggling with code stability and feel uncomfortable regarding your next software release you
should definitely use Citrus.

SOAP

) Backend |
~

SOAP SUT JMS

> Gm— Backend 2
_ - System p—
Client Application
Under Test

4 Http

{> Backend 3
_ y _
Fos ~ s ~
SOAP

{——> Backend |

SOAP sUT JMS

System <> Backend 2

Under Test

Http

> Backend 3

\ v L v

This test set up is typical for a Citrus use case. In such a test scenario we have a system under test
(SUT) with several message interfaces to other applications like you would have with an enterprise
service bus for instance. A client application invokes services on the SUT application. The SUT is
linked to several backend applications over various messaging transports (here SOAP, JMS, and
Http). Interim message notifications and final responses are sent back to the client application. This
generates a bunch of messages that are exchanged throughout the applications involved.

In the automated integration test Citrus needs to send and receive those messages over different
transports. Citrus takes care of all interface partners (ClientApplication, Backendl, Backend2,
Backend3) and simulates their behavior by sending proper response messages in order to keep the
message flow alive.

Each communication step comes with message validation and comparison against an expected
message template (e.g. XML or JSON data). Besides messaging actions Citrus is also able to perform
arbitrary other test actions. Citrus is able to perform a database query between requests as an
example.

The Citrus test case runs fully automated as a Java application. In fact a Citrus test case is nothing
but a JUnit or TestNG test case. Step by step the whole use case scenario is performed like in a real
production environment. The Citrus test is repeatable and is included into the software build
process (e.g. using Maven or ANT) like a normal unit test case would do. This gives you fully
automated integration tests to ensure interface stability.

The following reference guide walks through all Citrus capabilities and shows how to set up a great
integration test with Citrus.

Chapter 4. Setup

This chapter discusses how to get started with Citrus. It deals with the installation and set up of the
framework, so you are ready to start writing test cases after reading this chapter.

Usually you would use Citrus as a dependency library in your project. In Maven you would just add
Citrus as a test-scoped dependency in your POM. When using ANT you can also run Citrus as
normal Java application from your build.xml. As Citrus tests are nothing but normal unit tests you
could also use JUnit or TestNG ant tasks to execute the Citrus test cases.

This chapter describes the Citrus project setup possibilities, choose one of them that fits best to
include Citrus into your project.

4.1. Using Maven

Citrus uses Maven internally as a project build tool and provides extended support for Maven
projects. Maven will ease up your life as it manages project dependencies and provides extended
build life cycles and conventions for compiling, testing, packaging and installing your Java project.
Therefore it is recommended to use the Citrus Maven project setup. In case you already use Maven
it is most suitable for you to include Citrus as a test-scoped dependency.

As Maven handles all project dependencies automatically you do not need to download any Citrus
project artifacts in advance. If you are new to Maven please refer to the official Maven
documentation to find out how to set up a Maven project.

4.1.1. Maven archetype

If you start from scratch or in case you would like to have Citrus operating in a separate Maven
module you can use the Citrus Maven archetype to create a new Maven project. The archetype will
setup a basic Citrus project structure with basic settings and files.

mvn archetype:generate -Dfilter=com.consol.citrus.mvn:citrus

1: remote -> com.consol.citrus.mvn:citrus-quickstart (Citrus quickstart project)

2: remote -> com.consol.citrus.mvn:citrus-quickstart-jms (Citrus quickstart project
with JIMS consumer and producer)

3: remote -> com.consol.citrus.mvn:citrus-quickstart-soap (Citrus quickstart project
with SOAP client and producer)

Choose a number: 1

Define value for groupld: com.consol.citrus.samples
Define value for artifactId: citrus-sample

Define value for version: 1.0-SNAPSHOT

Define value for package: com.consol.citrus.samples

In the sample above we used the Citrus archetype available in Maven central repository. As the list
of default archetypes available in Maven central is very long, it has been filtered for official Citrus

10

http://maven.apache.org/

archetypes.

After choosing the Citrus quickstart archetype you have to define several values for your project:
the groupld, the artifactld, the package and the project version. After that we are done! Maven
created a Citrus project structure for us which is ready for testing. You should see the following
basic project folder structure.

citrus-sample

| + src

| | + main
||| +java
| | + resources
| | + test

| | | +java
| | + resources
pom.xml

The Citrus project is absolutely ready for testing. With Maven we can build, package, install and test
our project right away without any adjustments. Try to execute the following commands:

mvn clean verify
mvn clean verify -Dit.test=MyFirstCitrusTest

0 If you need additional assistance in setting up a Citrus Maven project please visit
our Maven setup tutorial on http://www.citrusframework.org/tutorials.html.

4.1.2. Existing Maven projects

In case you already have a proper Maven project you can also integrate Citrus with it. Just add the
Citrus project dependencies in your Maven pom.xml as a dependency like follows.

* We add Citrus as test-scoped project dependency to the project POM (pom.xml)

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-core</artifactId>
<version>2.7.7</version>
<scope>test</scope>

</dependency>

* In case you would like to use the Citrus Java DSL also add this dependency to the project

11

http://www.citfrusframework.org

<dependency>
<groupId>com.consol.citrus</groupld>
<artifactId>citrus-java-dsl</artifactId>
<version>2.7.7</version>
<scope>test</scope>

</dependency>

* Add the citrus Maven plugin to your project

<plugin>
<groupId>com.consol.citrus.mvn</groupld>
<artifactId>citrus-maven-plugin</artifactId>
<version>2.7.7</version>
<configuration>
<author>Donald Duck</author>
<targetPackage>com.consol.citrus</targetPackage>
</configuration>
</plugin>

Now that we have added Citrus to our Maven project we can start writing new test cases with the
Citrus Maven plugin:

mvn citrus:create-test

Once you have written the Citrus test cases you can execute them automatically in your Maven
software build lifecycle. The tests will be included into your projects integration-test phase using
the Maven failsafe plugin. Here is a sample failsafe configuration for Citrus.

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>2.20</version>
<executions>
<execution>
<id>integration-tests</id>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
</execution>
</executions>
</plugin>

The Citrus test sources go to the default Maven test sources directory src/test/java and
src/test/resources:

12

Now everything is set up and you can call the usual Maven install goal (mvn clean install) in order
to build your project. The Citrus integration tests are executed automatically during the build
process. Besides that you can call the Maven verify phase explicitly to execute all Citrus tests or a
specific test by its name including a validation of the test results.

mvn clean verify
mvn clean verify -Dit.test=MyFirstCitrusIT

The Maven failsafe plugin by default executed tests with specific name pattern.

o This is because integration tests should not execute in Maven unit test phase, too.
Therefore integration tests should follow the failsafe name pattern with each test
name beginning or ending with 'IT".

o If you need additional assistance in setting up a Citrus Maven project please visit
our Maven setup tutorial on http://www.citrusframework.org/tutorials.html.

4.2. Using Gradle

As Citrus tests are nothing but normal JUnit or TestNG tests the integration to Gradle as build tool is
as easy as adding the source files to a folder in your project. With the Gradle task execution for
integration tests you are able to execute the Citrus tests like you would do with normal unit tests.

4.2.1. Configuration

The Gradle build configuration is done in the build.gradle and settings.gradle files. Here we
define the project name and the project version.

rootProject.name = 'citrus-sample-gradle’
group 'com.consol.citrus.samples’
version '2.7.7'

Now as Citrus libraries are available on Maven central repository we add these repositories so
Gradle knows how to download the required Citrus artifacts.

repositories {
mavenCentral()
maven {
url "http://labs.consol.de/maven/snapshots-repository/’

Citrus stable release versions are available on Maven central. If you want to use the very latest next
version as snapshot preview you need to add the ConSol Labs snapshot repository which is
optional. Now lets move on with adding the Citrus libraries to the project.

13

http://www.citfrusframework.org

dependencies {
testCompile group: 'com.consol.citrus', name: 'citrus-core', version: '2.7.7'
testCompile group: 'com.consol.citrus', name: 'citrus-java-dsl', version: '2.7.7'
testCompile group: 'org.testng', name: 'testng', version: '6.11'

[...]

This enables the Citrus support for the project so we can use the Citrus classes and APIs. We decided
to use TestNG unit test library.

test {
useTestNG()

Of course JUnit is also supported. This is all for build configuration settings. We can move on to
writing some Citrus integration tests. You can find those tests in src/test/java directory.

4.2.2. Run with Gradle

You can use the Gradle wrapper for compile, package and test the sample with Gradle build
command line.

gradlew clean build

This executes all Citrus test cases during the build and you will see Citrus performing some
integration test logging output. After the tests are finished build is successful and you are ready to
go for writing some tests on your own.

If you just want to execute all tests you can call
gradlew clean check

Of course you can also start the Citrus tests from your favorite IDE. Just start the Citrus test using
the Gradle integration in Intelli], Eclipse or Netbeans.

4.3. Using Ant

Ant is a very popular way to compile, test, package and execute Java projects. The Apache project
has effectively become a standard in building Java projects. You can run Citrus test cases with Ant
as Citrus is nothing but a Java application. This section describes the steps to setup a proper Citrus
Ant project.

14

4.3.1. Preconditions

Before we start with the Citrus setup be sure to meet the following preconditions. The following
software should be installed on your computer, in order to use the Citrus framework:

* Java 8 or higher

Installed JDK plus JAVA_HOME environment variable set up and pointing to your Java installation
directory

* Java IDE (optional)

A Java IDE will help you to manage your Citrus project (e.g. creating and executing test cases). You
can use the any Java IDE (e.g. Eclipse or Intelli] IDEA) but also any convenient XML Editor to write
new test cases.

* Ant 1.8 or higher

Ant (http://ant.apache.org/) will run tests and compile your Citrus code extensions if necessary.

4.3.2. Download

First of all we need to download the latest Citrus release archive from the official website
http://www.citrusframework.org

Citrus comes to you as a zipped archive in one of the following packages:

e citrus-x.x-release

e citrus-x.x-src

The release package includes the Citrus binaries as well as the reference documentation and some
sample applications.

In case you want to get in touch with developing and debugging Citrus you can also go with the
source archive which gives you the complete Citrus Java code sources. The whole Citrus project is
also accessible for you on http://github.com/citrusframework/citrus. This open git repository on
GitHub enables you to build Citrus from scratch with Maven and contribute code changes.

4.3.3. Installation

After downloading the Citrus archives we extract those into an appropriate location on the local
storage. We are seeking for the Citrus project artifacts coming as normal Java archives (e.g. citrus-
core.jar, citrus-ws.jar, etc.)

You have to include those Citrus Java archives as well as all dependency libraries to your Apache
Ant Java classpath. Usually you would copy all libraries into your project’s lib directory and declare
those libraries in the Ant build file. As this approach can be very time consuming I recommend to
use a dependency management API such as Apache Ivy which gives you automatic dependency
resolution like that from Maven. In particular this comes in handy with all the 3rd party
dependencies that would be resolved automatically.

15

http://ant.apache.org/
http://www.citrusframework.org
http://github.com/citrusframework/citrus

No matter what approach you are using to set up the Apache Ant classpath see the following sample
Ant build script which uses the Citrus project artifacts in combination with the TestNG Ant tasks to
run the tests.

<project name="citrus-sample" basedir="." default="citrus.run.tests"
xmlns:artifact="antlib:org.apache.maven.artifact.ant">

<property file="src/it/resources/citrus.properties"/>

<path id="maven-ant-tasks.classpath" path="1lib/maven-ant-tasks-2.1.3.jar" />

<typedef resource="org/apache/maven/artifact/ant/antlib.xml"
uri="antlib:org.apache.maven.artifact.ant"
classpathref="maven-ant-tasks.classpath" />

<artifact:pom id="citrus-pom" file="pom.xml" />
<artifact:dependencies filesetId="citrus-dependencies" pomRefId="citrus-pom" />

<path id="citrus-classpath">
<pathelement path="src/it/java"/>
<pathelement path="src/it/resources"/>
<pathelement path="src/it/tests"/>
<fileset refid="citrus-dependencies"/>
</path>

<taskdef resource="testngtasks" classpath="1ib/testng-6.8.8.jar"/>

<target name="compile.tests">
<javac srcdir="src/it/java" classpathref="citrus-classpath"/>
<javac srcdir="src/it/tests" classpathref="citrus-classpath"/>
</target>

<target name="create.test" description="Creates a new empty test case">
<input message="Enter test name:" addproperty="test.name"/>
<input message="Enter test description:" addproperty="test.description"/>
<input message="Enter author's name:" addproperty="test.author"
defaultvalue="${default.test.author}"/>
<input message="Enter package:" addproperty="test.package"
defaultvalue="${default.test.package}"/>
<input message="Enter framework:" addproperty="test.framework"
defaultvalue="testng"/>

<java classname="com.consol.citrus.util.TestCaseCreator">
<classpath refid="citrus-classpath"/>
<arg line="-name ${test.name} -author ${test.author} -description
${test.description} -package ${test.package} -framework ${test.framework}"/>
</java>
</target>

<target name="citrus.run.tests" depends="compile.tests" description="Runs all Citrus
tests">

16

<testng classpathref="citrus-classpath">
<classfileset dir="src/it/java" includes="**/*.class" />
</testng>
</target>

<target name="citrus.run.single.test" depends="compile.tests" description="Runs a
single test by name">
<touch file="test.history"/>
<loadproperties srcfile="test.history"/>

<echo message="Last test executed: ${last.test.executed}"/>
<input message="Enter test name or leave empty for last test executed:"
addproperty="testclass" defaultvalue="${last.test.executed}"/>

<propertyfile file="test.history">
<entry key="last.test.executed" type="string" value="${testclass}"/>
</propertyfile>

<testng classpathref="citrus-classpath">
<classfileset dir="src/it/java" includes="**/${testclass}.class" />
</testng>
</target>

</project>
If you need detailed assistance for building Citrus with Ant do also visit our

tutorials section on http://www.citrusframework.org. There you can find a
tutorial which describes the Citrus Java project set up with Ant from scratch.

17

http://www.citrusframework.org

Chapter 5. Test cases

Now let us start writing test cases! A test case in Citrus describes all steps for a certain use case in
one single file. The Citrus test holds a sequence of test actions. Each action represents a very special
purpose such as sending or receiving a message. Typically with message-based enterprise
applications the sending and receiving of messages represent the main actions inside a test.

However you will learn that Citrus is more than just a simple SOAP client for instance. Each test
case can hold complex actions such as connecting to the database, transforming data, adding loops
and conditional steps. With the default Citrus action set you can accomplish very complex use case
integration tests. Later in this guide we will briefly discuss all available test actions and learn how
to use various message transports within the test. For now we will concentrate on the basic test case
structure.

- _____ references __, [Endpoint |]
- _____ references [Endpoint|]
- _____ references [Endpoint2]
- _____ references [Endpoint2]

18

_____ references [Endpoint |]

_____ references __, [Endpoint|]

_____ references __, [Endpoint2]

_____ references __, [Endpoint2]

The figure above describes a typical test action sequence in Citrus. A list of sending and receiving
test actions composing a typical test case here. Each action references a predefined Citrus endpoint
component that we are going to talk about later on.

So how do we define those test cases? In general Citrus specifies test cases as Java classes. With
TestNG or JUnit you can execute the Citrus tests within your Java runtime as you would do within
unit testing. You can code the Citrus test in a single Java class doing assertions and using Spring’s
dependency injection mechanisms.

If you are not familiar to writing Java code you can also write Citrus tests as XML files. Whatever
test language you choose for Citrus the whole test case description takes place in one single file
(Java or XML). This chapter will introduce the custom XML schema language as well as the Java
domain specific language so you will be able to write Citrus test cases no matter what knowledge
base you belong to.

5.1. Writing test cases in XML

Put simply, a Citrus test case is nothing but a simple Spring XML configuration file. The Spring
framework has become a state of the art development framework for enterprise Java applications.
As you work with Citrus you will also learn how to use the Spring Ioc (Inversion of control)
container and the concepts of dependency injection. So let us have a look at the pure Spring XML
configuration syntax first. You are free to write fully compatible test cases for the Citrus framework
just using this syntax.

19

Spring bean definition syntax

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean name="MyFirstTest"
class="com.consol.citrus.TestCase">
<property name="variableDefinitions">
<!-- variables of this test go here -->
</property>
<property name="actions">
<!-- actions of this test go here -->
</property>
</bean>
</beans>

Citrus can execute these Spring bean definitions as normal test cases - no problem, but the pure
Spring XML syntax is very verbose and probably not the best way to describe a test case in Citrus.
In particular you have to know a lot of Citrus internals such as Java class names and property
names. In addition to that as test scenarios get more complex the test cases grow in size. So we need
a more effective and comfortable way of writing tests. Therefore Citrus provides a custom XML
schema definition for writing test cases which is much more adequate for our testing purpose.

The custom XML schema aims to reach the convenience of domain specific languages (DSL). Let us
have a look at the Citrus test describing XML language by introducing a first very simple test case
definition:

20

XML DSL

<spring:beans
xmlns="http://www.citrusframework.org/schema/testcase"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:spring="http://www.springframework.org/schema/beans"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/testcase
http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd">

<testcase name="MyFirstTest">
<description>
First example showing the basic test case definition elements!
</description>
<variables>
<variable name="text" value="Hello Test Framework"/>
</variables>
<actions>
<echo>
<message>${text}</message>
</echo>
</actions>
</testcase>
</spring:beans>

We do need the “<spring:beans>" root element as the XML file is read by the Spring IoC container.
Inside this root element the Citrus specific namespace definitions take place.

The test case itself gets a mandatory name that must be unique throughout all test cases in a
project. You will receive errors when using duplicate test names. The test name has to follow the
common Java naming conventions and rules for Java classes. This means names must not contain
any whitespace characters but characters like -, "', ' are supported. For example, _TestFeature_1 is
valid but Test Feature 1 is not as it contains whitespace characters like spaces.

Now that we have an XML definition that describes the steps of our test we need a Java executable
for the test. The Java executable is needed for the framework in order to run the test. See the
following sample Java class that represents a simple Citrus Java test:

21

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.testng.AbstractTestNGCitrusTest;

@Test
public class MyFirstTest extends AbstractTestNGCitrusTest {

@CitrusXmlTest(name = "MyFirstTest")
public void myFirstTest() {
}

The sample above is a Java class that represents a valid Citrus Java executable. The Java class has
no programming logic as we use a XML test case here. The Java class can also be generated using
the Citrus Maven plugin. The Java class extends from basic superclass AbstractTestNGCitrusTest
and therefore uses TestNG as unit test framework. Citrus also supports JUnit as unit test framework.
Read more about this in run-with-testngand run-with-junit.

Up to now it is important to understand that Citrus always needs a Java executable test class. In
case we use the XML test representation the Java part is generic, can be generated and contains no
programming logic. The XML test defines all steps and is our primary test case definition.

5.2. Writing test cases in Java

Before we go into more details on the attributes and actions that take place within a test case we
just have a look at how to write test cases with pure Java code. Citrus works with Java and uses the
well known JUnit and TestNG framework benefits that you may be used to as a tester. Many users
may prefer to write Java code instead of the verbose XML syntax. Therefore you have another
possibility for writing Citrus tests in pure Java.

When using the Citrus Java DSL we need to include a special Maven dependency module to our
project that provides the needed API.

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-java-dsl</artifactId>
<version>2.7.7</version>
<scope>test</scope>

</dependency>

Citrus in general differences between two ways of test cases in Java. These are test-designers and
test-runners that we deal with each in the next two sections.

5.3.Java DSL test designer

The first way of defining a Citrus test in Java is the test-designer . The Java DSL for a test designer

22

#run-with-testng
#run-with-junit

works similar to the XML approach. The whole test case is built with all test actions first. Then the
whole test case is executed as a whole Citrus test. This is how to define a Citrus test with designer
Java DSL methods:

Java DSL designer

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class MyFirstTestDesigner extends TestNGCitrusTestDesigner {
@CitrusTest(name = "MyFirstTest")
public void myFirstTest() {
description("First example showing the basic test case definition elements!");

variable("text", "Hello Test Framework");

echo("${text}");

Citrus provides a base Java class com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner that
provides all capabilities for you in form of builder pattern methods. Just use the @CitrusTest
annotation on top of the test method. Citrus will use the method name as the test name by default.
As you can see in the example above you can also customize the test name within the @CitrusTest
annotation. The test method builds all test actions using the test builder pattern. The defined test
actions will then be called later on during test runtime.

The design time runtime difference in test-designer is really important to be understood. You can
mix the Citrus Java DSL execution with other Java code with certain limitations. We will explain
this later on when introducing the test-runner .

This is the basic test Java class pattern used in Citrus. You as a tester with development background
can easily extend this pattern for customized logic. Again if you are coming without coding
experience do not worry this Java code is optional. You can do exactly the same with the XML
syntax only as shown before. The test designer Java DSL is much more powerful though as you can
use the full Java programming language with class inheritance and method delegation.

We have mentioned that the test-designer will build the complete test case in design time with all
actions first before execution of the whole test case takes place at runtime of the test. This approach
has the advantage that Citrus knows all test actions in a test before execution. On the other hand
you are limited in mixing Java DSL method calls and normal Java code. The following example
should clarify things a little bit.

23

Java DSL designer

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class LoggingTestDesigner extends TestNGCitrusTestDesigner {
private LoggingService loggingService = new LoggingService();

@CitrusTest(name = "LoggingTest")
public void loggingTest() {
echo("Before loggingService call");

loggingService.log("Now called custom logging service");

echo("After loggingService call");

In this example test case above we use an instance of a custom LoggingService and call some
operation log() in the middle of our Java DSL test. Now developers might expect the logging service
call to be done in the middle of the Java Citrus test case but if we have a look at the logging output
of the test we get a total different result:

Expected output
INFO Citrus| STARTING TEST LoggingTest
INFO EchoAction| Before loggingService call
INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call
INFO Citrus| TEST SUCCESS LoggingTest
Actual output

INFO LoggingService| Now called custom logging service

INFO Citrus| STARTING TEST LoggingTest
INFO EchoAction| Before loggingService call
INFO EchoAction| After loggingService call
INFO Citrus| TEST SUCCESS LoggingTest

So if we analyse the actual logging output we see that the logging service was called even before the
Citrus test case did start its action. This is the result of test-designer building up the whole test case
first. The designer collects all test actions first in internal memory cache and the executes the whole
test case. So the custom service call on the LoggingService is not part of the Citrus Java DSL test
and therefore is executed immediately at design time.

We can fix this with the following test-designer code:

24

Java DSL designer

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class LoggingTestDesigner extends TestNGCitrusTestDesigner {
private LoggingService loggingService = new LoggingService();

@CitrusTest(name = "LoggingTest")
public void loggingTest() {
echo("Before loggingService call");

action(new AbstractTestAction() {
doExecute(TestContext context) {
loggingService.log("Now called custom logging service");

}
b

echo("After loggingService call");

Now we placed the loggingService call inside a custom TestAction implementation and therefore
this piece of code is part of the Citrus Java DSL and following from that part of the Citrus test
execution. Now with that fix we get the expected logging output:

INFO Citrus| STARTING TEST LoggingTest

INFO EchoAction| Before loggingService call

INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call

INFO Citrus| TEST SUCCESS LoggingTest

Now this is not easy to understand and people did struggle with this separation of designtime and
runtime of a Citrus Java DSL test. This is why we have implemented a new Java DSL base class
called test-runner that we deal with in the next section. Before we continue we have to mention
that the test-designer approach does also work for JUnit. Although we have only seen TestNG
sample code in this section everything is working exactly the same way with JUnit framework. Just
use the base class com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner instead.

Neither TestNGCitrusTestDesigner nor JUnit4CitrusTestDesigner
implementation is thread safe for parallel test execution. This is simply because

o the base class is holding state to the current test designer instance in order to
delegate method calls to this instance. Therefore parallel test method execution is
not available. Fortunately we have added a threadsafe base class implementation
that uses resource injection. Read more about this in test-resource-injection.

25

#test-resource-injection

5.4. Java DSL test runner

The new test runner concept solves the issues that may come along when working with the test
designer. We have already seen a simple example where the test designer requires strict separation
of designtime and runtime. The test runner implementation executes each test action immediately.
This changes the prerequisites in such that the test action Java DSL method calls can be mixed with
usual Java code statements. The the example that we have seen before in a test runner
implementation:

Java DSL runner

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestRunner;

@Test
public class LoggingTestRunner extends TestNGCitrusTestRunner {
private LoggingService loggingService = new LoggingService();

@CitrusTest(name = "LoggingTest")
public void loggingTest() {
echo("Before loggingService call");

loggingService.log("Now called custom logging service");

echo("After loggingService call");

With the new test runner implementation as base class we are able to mix Java DSL method calls
and normal Java code statement in our test in an unlimited way. This example above will also
create the expected logging output as all Java DSL method calls are executed immediately.

INFO Citrus| STARTING TEST LoggingTest

INFO EchoAction| Before loggingService call

INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call

INFO Citrus| TEST SUCCESS LoggingTest

In contrary to the test designer the test runner implementation will not build the complete test case
before execution. Each test action is executed immediately as it is called with Java DSL builder
methods. This creates a more natural way of coding test cases as you are also able to use iterations,
try catch blocks, finally sections and so on.

In the examples here TestNG was used as unit framework. Of course the exact same approach can
also apply to JUnit framework. Just use the base class
com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner instead. Feel free to choose the base class for
test-designer or test-runner as you like. You can also mix those two approaches in your project.

26

Citrus is able to handle both ways of Java DSL code in a project.

The TestNGCitrusTestRunner and JUnit4CitrusTestRunner implementation is
not thread safe for parallel test execution. This is simply because the base class is

o holding state to the current test runner instance in order to delegate method calls
to this instance. Therefore parallel test method execution is not available.
Fortunately we have added a threadsafe base class implementation that uses
resource injection. Read more about this in test-resource-injection.

5.5. Designer/Runner injection

In the previous sections we have seen the different approaches for test designer and runner
implementations. Up to now the decision which implementation to use was made by extending one
of the base classes:

» com.consol.citrus.dsl.testng.TestNGCitrusTestRunner

» com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner

* com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner

* com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner
These four classes represent the different designer and runner implementations for TestNG or
JUnit. Now Citrus also provides a resource injection mechanism for both designer and runner
implementations. The classes using this feature are:

* com.consol.citrus.dsl.testng.TestNGCitrusTest

* com.consol.citrus.dsl.junit.JUnit4CitrusTest

So what is the deal with that? It is simple when looking at a first example using resource injection:

@Test
public class InjectionTest extends JUnit4CitrusTest {

@CitrusTest(name = "JUnit4DesignerTest")
public void designerTest(@CitrusResource TestDesigner designer) {
designer.echo("Now working on designer instance");

}

@CitrusTest(name = "JUnit4RunnerTest")
public void runnerTest(@CitrusResource TestRunner runner) {
runner.echo("Now working on runner instance");

The designer or runner instance is injected as Citrus resource to the test method as parameter. This
way we can mix designer and runner in a single test. But this is not the real motivation for the
resource injection. The clear advantage of this approach with injected designer and runner

27

#test-resource-injection

instances is support for multi threading. In case you want to execute the Citrus tests in parallel
using multiple threads you need to use this approach. This is because the usual designer and
runner base classes are not thread safe. This JUnit4CitrusTest base class is because the resources
injected are not kept as state in the base class.

This is our first Citrus resource injection use case. The framework is able to inject other resources,
too. Find out more about this in the next sections.

5.6. Test context injection

When running a test case in Citrus we make use of basic framework components and capabilities.
One of these capabilities is to use test variables, functions and validation matchers. Up to this point
we have not learned about these things. They will be described in the upcoming chapters and
sections in more detail. Right now I want to talk about resource injection in Citrus.

All these feature mentioned above are bound to some important Citrus component: the Citrus test
context. The test context holds all variables and is able to resolve functions and matchers. In
general you as a tester will not need explicit access to this component as the framework is working
with it behind the scenes. In case you need some access for advanced operations with the
framework Citrus provides a resource injection. Lets have a look at this so things are getting more
clear.

public class ResourceInjectionIT extends JUnit4CitrusTestDesigner {

@Test

@CitrusTest

public void resourceInjectionIT(@CitrusResource TestContext context) {
context.setVariable("myVariable", "some value");
echo("${myVariable}");

As you can see we have added a method parameter of type
com.consol.citrus.context.TestContext to the test method. The annotation @CitrusResource tells
Citrus to inject this parameter with the according instance of the object for this test. Now we have
easy access to the context and all its capabilities such as variable management.

Of course the same approach works with TestNG, too. As TestNG also provides resource injection
mechanisms we have to make sure that the different resource injection approaches do not interfere
with each other. So we tell TestNG to not inject this parameter by declaring it as @Optional for
TestNG. In addition to that we need to introduce the parameter to TestNG with the @Parameters
annotation. Otherwise TestNG would complain about not knowing this parameter. The final test
method with Citrus resource injection looks like follows:

28

public class ResourceInjectionIT extends TestNGCitrusTestDesigner {

@Test @Parameters("context")

@CitrusTest

public void resourceInjectionIT(@0ptional @CitrusResource TestContext context) {
context.setVariable("myVariable", "some value");
echo("${myVariable}");

Some more annotations needed but the result is the same. We have access to the Citrus test context.
Of course you can combine the resource injection for different Citrus components. Just add more
some @CitrusResource annotated method parameters to the test method.

5.7.Java DSL test behaviors

When using the Java DSL the concept of behaviors is a good way to reuse test action blocks. By
putting test actions to a test behavior we can instantiate and apply the behavior to different test
cases multiple times. The mechanism is explained best when having a simple sample:

public class FooBehavior extends AbstractTestBehavior {
public void apply() {
variable("foo", "test");

echo("fooBehavior");
}
public class BarBehavior extends AbstractTestBehavior {
public void apply() {

variable("bar", "test");

echo("barBehavior");

The listing above shows two test behaviors that add very specific test actions and test variables to
the test case. As you can see the test behavior is able to use the same Java DSL action methods as a
normal test case would do. Inside the apply method block we define the behaviors test logic. Now
once this is done we can use the behaviors in a test case like this:

29

@CitrusTest

public void behaviorTest() {
description("This is a behavior Test");
author("Christoph");
status(TestCaseMetalnfo.Status.FINAL);

variable("var", "test");

applyBehavior(new FooBehavior());
echo("Successfully applied bar behavior");
applyBehavior(new BarBehavior());

echo("Successfully applied bar behavior");

The behavior is applied to the test case by calling the applyBehavior method. As a result the
behavior is called adding its logic at this point of the test execution. The same behavior can now be
called in multiple test cases so we have a reusable set of test actions.

5.8. Description

In the test examples that we have seen so far you may have noticed that a tester can give a detailed
test description. The test case description clarifies the testing purpose and perspectives. The
description should give a short introduction to the intended use case scenario that will be tested.
The user should get a first impression what the test case is all about as well as special information
to understand the test scenario. You can use free text in your test description no limit to the number
of characters. But be aware of the XML validation rules of well formed XML when using the XML
test syntax (e.g. special character escaping, use of CDATA sections may be required)

5.9. Test Actions

Now we get close to the main part of writing an integration test. A Citrus test case defines a
sequence of actions that will take place during the test. Actions by default are executed sequentially
in the same order as they are defined in the test case definition.

XML DSL

<actions>
<action>[...]</action>
<action>[...]</action>
</actions>

All actions have individual names and properties that define the respective behavior. Citrus offers a
wide range of test actions from scratch, but you are also able to write your own test actions in Java
or Groovy and execute them during a test. actions gives you a brief description of all available

30

#actions

actions that can be part of a test case execution.

The actions are combined in free sequence to each other so that the tester is able to declare a
special action chain inside the test. These actions can be sending or receiving messages, delaying
the test, validating the database and so on. Step-by-step the test proceeds through the action chain.
In case one single action fails by reason the whole test case is red and declared not successful.

5.10. Finally test section

Java developers might be familiar with the concept of doing something in the finally code section.
The finally section contains a list of test actions that will be executed guaranteed at the very end of
the test case even if errors did occur during the execution before. This is the right place to tidy up
things that were previously created by the test like cleaning up the database for instance. The
finally section is described in more detail in finally-section. However here is the basic syntax inside
a test.

XML DSL

<finally>
<echo>
<message>Do finally - regardless of what has happened before</message>
</echo>
</finally>

Java DSL designer

@CitrusTest
public void sampleTest() {
echo("Hello Test Framework");

doFinally(
echo("Do finally - regardless of any error before")

)

Java DSL runner

@CitrusTest
public void sampleTest() {
echo("Hello Test Framework");

doFinally()
.actions(
echo("Do finally - regardless of any error before")

)i

31

#finally-section

5.11. Test meta information

The user can provide some additional information about the test case. The meta-info section at the
very beginning of the test case holds information like author, status or creation date. In detail the
meta information is specified like this:

XML DSL

<testcase name="metalnfoTest">

<meta-info>
<author>Christoph Deppisch</author>
<creationdate>2008-01-11</creationdate>
<status>FINAL</status>
<last-updated-by>Christoph Deppisch</last-updated-by>
<last-updated-on>2008-01-11T710:00:00</1ast-updated-on>

</meta-info>

<description>

</description>
<actions>

</actions>
</testcase>

Java DSL

@CitrusTest

public void sampleTest() {
description("This is a Test");
author("Christoph");
status(Status.FINAL);

echo("Hello Citrus!");

The status allows following values: DRAFT, READY_FOR_REVIEW, DISABLED, FINAL. The meta-data
information to a test is quite important to give the reader a first information about the test. It is also
possible to generate test documentation using this meta-data information. The built-in Citrus
documentation generates HTML or Excel documents that list all tests with their metadata
information and description.

Tests with the status DISABLED will not be executed during a test suite run. So
someone can just start adding planned test cases that are not finished yet in
status DRAFT. In case a test is not runnable yet because it is not finished, someone

0 may disable a test temporarily to avoid causing failures during a test run. Using
these different statuses one can easily set up test plans and review the progress of
test coverage by comparing the number of DRAFT tests to those in the FINAL
state.

32

Now you know the possibilities how to write Citrus test cases in XML or Java. Please choose
whatever code language type you want (Java, XML, Spring bean syntax) in order to write Citrus test
cases. Developers may choose Java, testers without coding experience may run best with the XML
syntax. We are constantly working on even more test writing language support such as Groovy,
Scala, Xtext, and so on. In general you can mix the different language types just as you like within
your Citrus project which gives you the best of flexibility.

33

Chapter 6. Test variables

The usage of test variables is a core concept when writing good maintainable tests. The key
identifiers of a test case should be exposed as test variables at the very beginning of a test. This way
hard coded identifiers and multiple redundant values inside the test can be avoided from scratch.
As a tester you define all test variables at the very beginning of your test.

XML DSL

<variables>
<variable name="text" value="Hello Test Framework"/>
<variable name="customerId" value="123456789"/>
</variables>

Java DSL

variable("text", "Hello Test Framework");
variable("customerId", "123456789");

The concept of test variables is essential when writing complex tests with lots of identifiers and
semantic data. Test variables are valid for the whole test case. You can reference them several times
using a common variable expression "${variable-name}" . It is good practice to provide all
important entities as test variables. This makes the test easier to maintain and more flexible. All
essential entities and identifiers are present right at the beginning of the test, which may also give
the opportunity to easily create test variants by simply changing the variable values for other test
scenarios.

The name of the variable is arbitrary. Feel free to specify any name you can think of. Of course you
need to be careful with special characters and reserved XML entities like '&', '<', ">'. If you are
familiar with Java or any other programming language simply think of the naming rules there and
you will be fine with working on Citrus variables, too. The value of a variable can be any character
sequence. But again be aware of special XML characters like "<" that need to be escaped ("<") when

used in variable values.

The advantage of variables is obvious. Once declared the variables can be referenced many times
in the test. This makes it very easy to vary different test cases by adjusting the variables for
different means (e.g. use different error codes in test cases).

6.1. Global variables

The last section told us to use variables as they are very useful and extend the maintainability of
test cases. Now that every test case defines local variables you can also define global variables. The
global variables are valid in all tests by default. This is a good opportunity to declare constant
values for all tests. As these variables are global we need to add those to the basic Spring
application context file. The following example demonstrates how to add global variables in Citrus:

34

<citrus:global-variables>
<citrus:variable name="projectName" value="Citrus Integration Testing"/>
<citrus:variable name="userName" value="TestUser"/>
</citrus:global-variables>

We add the Spring bean component to the application context file. The component receives a list of
name-value variable elements. You can reference the global variables in your test cases as usual.

Another possibility to set global variables is to load those from external property files. This may
give you more powerful global variables with user specific properties for instance. See how to load
property files as global variables in this example:

<citrus:global-variables>
<citrus:file path="classpath:global-variable.properties"/>
</citrus:global-variables>

We have just added a file path reference to the global variables component. Citrus loads the
property file content as global test variables. You can mix property file and name-value pair
variable definitions in the global variables component.

The global variables can have variable expressions and Citrus functions. It is
possible to use previously defined global variables as values of new variables, like
in this example:

user=Citrus
greeting=Hello ${user}!
date=citrus:currentDate('yyyy-MM-dd")

6.2. Create variables with CDATA

When using th XML test case DSL we can not have XML variable values out of the box. This would
interfere with the XML DSL elements defined in the Citrus testcase XSD schema. You can use CDATA
sections within the variable value element in order to do this though.

35

<variables>
<variable name="persons">

<value>
<data>
<![CDATA[
<persons>
<person>
<name>Theodor</name>
<age>10</age>
</person>
<person>
<name>Alvin</name>
<age>9</age>
</person>
</persons>
11>
</data>
</value>
</variable>
</variables>

That is how you can use XML variable values in the XML DSL. In the Java DSL we do not have these
problems.

6.3. Create variables with Groovy

You can also use a script to create variable values. This is extremely handy when you have very
complex variable values. Just code a small Groovy script for instance in order to define the variable
value. A small sample should give you the idea how that works:

36

<variables>
<variable name="avg">
<value>
<script type="groovy">
<![CDATA[
a=4
b==6
return (a + b) / 2
11>
</seript>
</value>
</variable>
<variable name="sum">
<value>
<script type="groovy">
<![CDATA[
5+5
11>
</seript>
</value>
</variable>
</variables>

We use the script code right inside the variable value definition. The value of the variable is the
result of the last operation performed within the script. For longer script code the use of
"<I[CDATA[]]> " sections is recommended.

Citrus uses the javax ScriptEngine mechanism in order to evaluate the script code. By default
Groovy is supported in any Citrus project. So you can add additional ScriptEngine implementations
to your project and support other script types, too.

6.4. Escaping variables expression

The test variables expression syntax "${variable-name}" is preserved to evaluate to a test variable
within the current test context. However the same syntax may be part of a message content as is. So
you need to somehow escape the syntax from beeing interpreted as test variable syntax. You can do
this by using the variable expression escaping // character sequence wrapping the actual variable
name like this

This is a escaped variable expression ${//escaped//} and should not lead to unknown
variable exceptions within Citrus.

The escaped expression ${//escaped//} above will result in the string ${escaped} where escaped is
not treated as a test variable name but as a normal string in the message payload. This way you are
able to have the same variable syntax in a message content without interfering with the Citrus
variable expression syntax. As a result Citrus will not complain about not finding the test variable
escaped in the current context. The variable syntax escaping characters // are automatically

37

removed when the expression is processed by Citrus. So we will get the following result after
processing.

This is a escaped variable expression ${escaped} and should not lead to unknown
variable exceptions within Citrus.

38

Chapter 7. Running tests

Citrus test cases are nothing but Java classes that get executed within a Java runtime environment.
Each Citrus test therefore relates to a Java class representing a JUnit or TestNG unit test. As optional
add on a Citrus test can have a XML test declaration file. This is for those of you that do not want to
code in Java. In this case the XML part holds all actions to tell Citrus what should happen in the test
case. The Java part will then just be responsible for test execution and is not likely to be changed at
all. In the following sections we concentrate on the Java part and the test execution mechanism.

If you create new test cases in Citrus - for instance via Maven plugin or ANT build script - Citrus
generates both parts in your test directory. For example: if you create a new test named
MyFirstCitrusTest you will find these two files as a result:

src/it/tests/com/consol/citrus/MyFirstCitrusTest.xml
src/it/java/com/consol/citrus/MyFirstCitrusTest.java

If you prefer to just write Java code you can throw away the XML part
immediately and continue working with the Java part only. In case you are

O familiar with writing Java code you may just skip the test template generation via
Maven or ANT and preferably just create new Citrus Java test classes on your
own.

With the creation of this test we have already made a very important decision. During creation,
Citrus asks you which execution framework should be used for this test. There are basically three
options available: testng and junit .

So why is Citrus related to Unit tests although it is intended to be a framework for integration
testing? The answer to this question is quite simple: This is because Citrus wants to benefit from
both JUnit and TestNG for Java test execution. Both the JUnit and TestNG Java APIs offer various
ways of execution and both frameworks are widely supported by other tools (e.g. continuous build,
build lifecycle, development IDE).

Users might already know one of these frameworks and the chances are good that they are familiar
with at least one of them. Everything you can do with JUnit and TestNG test cases you can do with
Citrus tests also. Include them into your Maven build lifecycle. Execute tests from your IDE (Eclipse,
IDEA or NetBeans). Include them into a continuous build tool (e.g. Jenkins). Generate test execution
reports and test coverage reports with Sonar, Cobertura and so on. The possibilities with JUnit and
TestNG are amazing.

So let us have a closer look at the Citrus TestNG and JUnit integration.

7.1. Run with TestNG

TestNG stands for next generation testing and has had a great influence in adding Java annotations
to the unit test community. Citrus is able to generate TestNG Java classes that are executable as test
cases. See the following standard template that Citrus will generate when having new test cases:

39

TestNG Citrus XML test
package com.consol.citrus.samples;

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusXmlTest;
import com.consol.citrus.testng.AbstractTestNGCitrusTest;

@Test

public class SampleIT extends AbstractTestNGCitrusTest {
@CitrusXmlTest(name = "SamplelIT")
public void sampleTest() {}

If you are familiar with TestNG you will see that the generated Java class is nothing but a normal
TestNG test class. We just extend a basic Citrus TestNG class which enables the Citrus test execution
features for us. Besides that we have a usual TestNG @Test annotation placed on our class so all
methods inside the class will be executed as separate test case.

The good news is that we can still use the fantastic TestNG features in our test class. You can think
of parallel test execution, test groups, setup and tear down operations and so on. Just to give an
example we can simply add a test group to our test like this:

@Test(groups = {"long-running"})

For more information on TestNG please visit the official homepage, where you find a complete
reference documentation.

You might have noticed that the example above loads test cases from XML. This is why we are using
the @CitrusXmlTest annotation. Again this approach is for people that want to write no Java code.
The test logic is then provided in the XML test definition. We discuss XML tests in Citrus in more
detail in run-xml-tests. Next lets have a look at a TestNG Java DSL test.

When writing tests in pure Java we have pretty much the exact same logic that applies to executing
Citrus test cases. The Citrus test extends from a TestNG base class and uses the normal @Test
annotations on method or class level. Here is a short sample TestNG Java class for this:

40

#run-xml-tests

TestNG Citrus Java DSL designer test

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class MyFirstTestDesigner extends TestNGCitrusTestDesigner {
@CitrusTest(name = "MyFirstIT")
public void myFirstTest() {
description("First example showing the basic test case definition elements!");

variable("text", "Hello Test Framework");

echo("${test}");

You see the class is quite similar to the XML test variation. Now we extend a Citrus test designer
class which enables the Java DSL features in addition to the TestNG test execution for us. The basic
@Test annotation for TestNG has not changed. We still have a usual TestNG class with the
possibility of several methods each representing a separate unit test.

Now what has changed is the @CitrusTest annotation. Now the Citrus test logic is placed directly as
the method body with using the Java domain specific language features. The XML Citrus test part is
not necessary anymore. If you are wondering about the designer super class and the Java DSL
methods for adding the test logic to your test please be patient we will learn more about the Java
DSL features in this reference guide later on.

Up to now we just concentrate on the TestNG integration that is quite easy isn’t it.

7.2. Using TestNG DataProviders

TestNG as a framework comes with lots of great features such as data providers. Data providers
execute a test case several times. Each test execution gets a specific parameter value. With Citrus
you can use those data provider parameters inside the test as variables. See the next listing on how
to use TestNG data providers in Citrus:

41

TestNG Citrus data provider test

public class DataProviderIT extends AbstractTestNGCitrusTest {

@CitrusXmlTest

@CitrusParameters("message")

@Test(dataProvider = "messageDataProvider")

public void DataProviderIT(ITestContext testContext) {
}

@DataProvider

public Object[][] messageDataProvider() {

return new Object[][] {

{ "Hello World!" },

{ "Hallo Welt!" },

{ "Hi Citrus!" },

Jrs
}

}

Above test case method is annotated with TestNG data provider called messageDataProvider . In
the same class you can write the data provider that returns a list of parameter values. TestNG will
execute the test case several times according to the provided parameter list. Each execution is
shipped with the respective parameter value. According to the @CitrusParameter annotation the
test will have a test variable called message that is accessible as usual.

7.3. Run with JUnit5

JUnit5 is the new major version of the famous unit testing framework. The JUnit platform provides
extension points for other frameworks to integrate with the unit testing execution. Citrus uses these
extensions in order to enable Citrus related dependency injection and parameter resolving.

You can use the Citrus JUnit5 extension on your unit test as follows:

42

JUnit5 Citrus XML test
package com.consol.citrus.samples;

import com.consol.citrus.annotations.CitrusXmlTest;

import com.consol.citrus.junit.jupiter.CitrusBaseExtension;
import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.ExtendWith;

/**
* @author Christoph Deppisch
*/
@ExtendWith(CitrusBaseExtension.class)
public class SampleXmlIT {
@Test
@CitrusXmlTest(name = "SampleXmlIT")
public void test() {}

The class above is using the JUnit5 @Test annotation as a normal unit test would do. In addition to
that we extend with the CitrusBaseExtension. This enables us to use the @CitrusXmlTest annotation
on the test method which automatically loads the XML test case file for execution.

In case you want to use the Citrus Java DSL for writing the test logic you can use the following
setup:

43

JUnit5 Citrus Java DSL designer test

package com.consol.citrus.samples;

import com.
import com.
import com.
import com.
import org.
import org.

/**

consol.citrus.
consol.citrus.
consol.citrus.
consol.citrus.
junit.jupiter.
junit.jupiter.

annotations.CitrusResource;
annotations.CitrusTest;
dsl.design.TestDesigner;
dsl.junit.jupiter.CitrusExtension;
api.Test;
api.extension.ExtendWith;

* @author Christoph Deppisch

*/

@ExtendWith(CitrusExtension.class)
public class SamplelT {

@Test

@CitrusTest

public void test(@CitrusResource TestDesigner designer) {

designer.variable("time", "citrus:currentDate()");
designer.echo("Hello Citrus!");
designer.echo("CurrentTime is: ${time}");

The Java DSL test case is using the CitrusExtension to extend the JUnit5 test with Citrus
functionality. After doing that we can use @CitrusResource annotated method parameters that inject
the test designer. The designer is the entrance to the Java fluent API provided by Citrus. Of course

you can also inject the test runner fluent API.

44

JUnit5 Citrus Java DSL runner test

package com.consol.citrus.samples;

import com.
import com.
import com.
import com.
import org.
import org.

/**

consol.citrus.
consol.citrus.
consol.citrus.
consol.citrus.
junit.jupiter.
junit.jupiter.

annotations.CitrusResource;
annotations.CitrusTest;
dsl.runner.TestRunner;
dsl.junit.jupiter.CitrusExtension;
api.Test;
api.extension.ExtendWith;

* @author Christoph Deppisch

*/

@ExtendWith(CitrusExtension.class)
public class SamplelT {

@Test

@CitrusTest

public void test(@CitrusResource TestRunner runner) {
runner.variable("time", "citrus:currentDate()");
runner.echo("Hello Citrus!");
runner.echo("CurrentTime is: ${time}");

You can also use @TestContext parameter injection in order to get access to the current test context
used by Citrus. Also you can inject Citrus endpoints via @CitrusEndpoint annotated field injection in
your test class. This enabled you to inject endpoint components that are defined in the Citrus Spring

application context configuration.

45

JUnit5 Citrus Java DSL runner test

package com.consol.citrus.samples;

import
import
import
import
import
import
import

/**

com.
com.
com.
com.
org.
org.
org.

* @author

*/

consol.citrus.annotations.*;
consol.citrus.dsl.runner.TestRunner;
consol.citrus.dsl.junit.jupiter.CitrusExtension;
consol.citrus.http.client.HttpClient;
junit.jupiter.api.Test;
junit.jupiter.api.extension.ExtendWith;
springframework.http.HttpStatus;

Christoph Deppisch

@ExtendWith(CitrusExtension.class)
public class SampleIT {

@CitrusEndpoint
private HttpClient httpClient;

@Test
@CitrusTest

public void test(@CitrusResource TestRunner runner) {
runner.http(action -> action.client(httpClient)

.send()
.get("/hello"));

runner.http(action -> action.client(httpClient)

.receive()
.response(HttpStatus.0K));

7.4. Run with JUnit4

JUnit is a very popular unit test framework for Java applications widely accepted and widely
supported by many tools. In general Citrus supports both JUnit and TestNG as test execution
frameworks. Although the TestNG customization features are slightly more powerful than those
offered by JUnit you as a Citrus user should be able to use the framework of your choice. The
complete support for executing test cases with package scans and multiple annotated methods is
given for both frameworks. If you choose junit as execution framework Citrus generates a Java file

that looks like this:

46

JUnit4 Citrus XML test
package com.consol.citrus.samples;

import org.junit.Test;
import com.consol.citrus.annotations.CitrusXmlTest;
import com.consol.citrus.junit.AbstractJUnit4CitrusTest;

public class SampleIT extends AbstractJUnit4CitrusTest {
@Test
@CitrusXmlTest(name = "SamplelIT")
public void sampleTest() {}

JUnit and TestNG as frameworks reveal slight differences, but the idea is the same. We extend a
base JUnit Citrus test class and have one to many test methods that load the XML Citrus test cases
for execution. As you can see the test class can hold several annotated test methods that get
executed as JUnit tests. The fine thing here is that we are still able to use all JUnit features such as
before/after test actions or enable/disable tests.

The Java JUnit classes are simply responsible for loading and executing the Citrus test cases. Citrus
takes care on loading the XML test as a file system resource and to set up the Spring application
context. The test is executed and success/failure state is reported exactly like a usual JUnit unit test
would do. This also means that you can execute this Citrus JUnit class like every other JUnit test,
especially out of any Java IDE, with Maven, with ANT and so on. This means that you can easily
include the Citrus test execution into you software building lifecycle and continuous build.

So now we know both TestNG and JUnit support in Citrus. Which framework
should someone choose? To be honest, there is no easy answer to this question.

Q The basic features are equivalent, but TestNG offers better possibilities for
designing more complex test setup with test groups and tasks before and after a
group of tests. This is why TestNG is the default option in Citrus. But in the end
you have to decide on your own which framework fits best for your project.

The first example seen here is using @CitrusXmlTest annotation in order to load a XML file as test.
The Java part is then just an empty envelope for executing the test with JUnit. This approach is for
those of you that are not familiar with Java at all. You can find more information on loading XML
files as Citrus tests in run-xml-tests. Secondly of course we also have the possibility to use the Citrus
Java DSL with JUnit. See the following example on how this looks like:

47

#run-xml-tests

JUnit4 Citrus Java DSL test
package com.consol.citrus.samples;

import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.JUnit4CitrusTestDesigner;
import org.junit.Test;

public class SampleIT extends JUnit4CitrusTestDesigner {

@Test

@CitrusTest

public void EchoSampleIT() {
variable("time", "citrus:currentDate()");
echo("Hello Citrus!");
echo("CurrentTime is: ${time}");

@Test

@CitrusTest(name = "EchoIT")

public void echoTest() {
echo("Hello Citrus!");

}

The Java DSL test case looks quite familiar as we also use the JUnit4 @Test annotation in order to
mark our test for unit test execution. In addition to that we add a @CitrusTest annotation and
extend from a basic JUnit4 Citrus test designer which enables the Java domain specific language
features. The Citrus test logic goes directly to the method block. There is no need for a XML test file
anymore.

As you can see the @CitrusTest annotation supports multiple test methods in one single class. Each
test is prepared and executed separately just as you know it from JUnit. You can define an explicit
Citrus test name that is used in Citrus test reports. If no explicit test name is given the test method
name will be used as a test name.

If you need to know more details about the test designer and on how to use the Citrus Java DSL just
continue with this reference guide. We will describe the capabilities in detail later on.

7.5. Running XML tests

Now we also use the @CitrusXmlTest annotation in the Java class. This annotation makes Citrus
search for a XML file that represents the Citrus test within your classpath. Later on we will also
discuss another Citrus annotation (@CitrusTest) which stands for defining the Citrus test just with
Java domain specific language features. For now we continue to deal with the XML Citrus test
execution.

The default naming convention requires a XML file with the tests name in the same package that
the Java class is placed in. In the basic example above this means that Citrus searches for a XML test

48

file in com/consol/citrus/samples/SampleIT.xml . You tell Citrus to search for another XML file by
using the @CitrusXmlTest annotation properties. Following annotation properties are valid:

name

List of test case names to execute. Names also define XML file names to look for (.xml file
extension is not needed here).

packageName

Custom package location for the XML files to load

packageScan

List of packages that are automatically scanned for XML test files to execute. For each XML file
found separate test is executed. Note that this performs a Java Classpath package scan so all XML
files in package are assumed to be valid Citrus XML test cases. In order to minimize the amount
of accidentally loaded XML files the scan will only load XML files with **/*Test.xml and
**/*1T.xml file name pattern.

You can also mix the various CitrusXmlTest annotation patterns in a single Java class. So we are
able to have several test cases in one single Java class. Each annotated method represents one or
more Citrus XML test cases. Se the following example to see what this is about.

TestNG Citrus XML test

@Test

public class SampleIT extends AbstractTestNGCitrusTest {
@CitrusXmlTest(name = "SampleIT")
public void sampleTest() {}

@CitrusXmlTest(name = { "SampleIT", "AnotherIT" })
public void multipleTests() {}

@CitrusXmlTest(name = "OtherIT", packageName = "com.other.testpackage")
public void otherPackageTest() {}

@CitrusXmlTest(packageScan = { "com.some.testpackage", "com.other.testpackage" })
public void packageScanTest() {}

You are free to combine these test annotations as you like in your class. As the whole Java class is
annotated with the TestNG @Test annotation each method gets executed automatically. Citrus will
also take care on executing each XML test case as a separate unit test. So the test reports will have
the exact number of executed tests and the JUnit/TestNG test reports do have the exact test outline
for further usage (e.g. in continuous build reports).

When test execution takes place each test method annotation is evaluated in
0 sequence. XML test cases that match several times, for instance by explicit name

reference and a package scan will be executed several times respectively.

The best thing about using the @CitrusXmlTest annotation is that you can continue to use the

49

fabulous TestNG capabilities (e.g. test groups, invocation count, thread pools, data providers, and so
on).

So now we have seen how to execute a Citrus XML test with TestNG.

50

Chapter 8. Configuration

You have several options in customizing the Citrus project configuration. Citrus uses default
settings that can be overwritten to some extend. As a framework Citrus internally works with the
Spring IoC container. So Citrus will start a Spring application context and register several
components as Spring beans. You can customize the behavior of these beans and you can add
custom settings by setting system properties.

8.1. Application environment settings

Citrus as an application reads general settings from system properties and environment variables.
The mechanism used is based on the property placeholder resource management. Application
settings are read on startup by evaluating system properties first. After that environment variables
get consulted for default values. If non of these is set the default value in Citrus sources is used.

This settings mechanism is well suited for both usual Java runtime environment and containerized
runtime environments such as Docker or Kubernetes. Following from that you can overwrite
general Citrus application settings by just providing a system property or environment variable on
your local environment. The following settings do support this kind of environment configuration.

Table 1. System properties
System properties Description

citrus.application.properties File location for application property file that
holds other settings. These properties get loaded
as system properties on startup.
(default="classpath:citrus-
application.properties")

citrus.spring.application.context File location for Spring XML configurations
(default="classpath*:citrus-context.xml")

citrus.spring.java.config Class name for Spring Java config (default=null)

citrus.file.encoding Default file encoding used in Citrus when
reading and writing file content
(default=Charset.defaultCharset())

citrus.default.message.type Default message type for validating payloads
(default="XML")

citrus.test.name.variable Default test name variable that is automatically
created for each test (default="citrus.test.name")

citrus.test.package.variable Default test package variable that is
automatically created for each test
(default="citrus.test.package")

citrus.default.src.directory Default test source directory (default="src/test/")

51

System properties Description

citrus.xml.file.name.pattern File name patterns used for XML test file
package scan
(default="/**/*Test.xml,/**/*IT.xml")

citrus.java.file.name.pattern File name patterns used for Java test sources
package scan
(default="/**/*Test.java,/**/*IT.java")

Same properties are settable via environment variables.

Table 2. Environment variables
Environment variable Description

CITRUS_APPLICATION_PROPERTIES File location for application property file that
holds other settings. These properties get loaded
as system properties on startup.
(default="classpath:citrus-
application.properties")

CITRUS_SPRING_APPLICATION_CONTEXT File location for Spring XML configurations
(default="classpath*:citrus-context.xml")

CITRUS_SPRING_JAVA_CONFIG Class name for Spring Java config (default=null)

CITRUS_FILE_ENCODING Default file encoding used in Citrus when

reading and writing file content
(default=Charset.defaultCharset())

CITRUS_DEFAULT_MESSAGE_TYPE Default message type for validating payloads
(default="XML")

CITRUS_TEST NAME _VARIABLE Default test name variable that is automatically
created for each test (default="citrus.test.name")

CITRUS_TEST_PACKAGE_VARIABLE Default test package variable that is
automatically created for each test
(default="citrus.test.package")

CITRUS_DEFAULT_SRC_DIRECTORY Default test source directory (default="src/test/")

CITRUS_XML_FILE_NAME_PATTERN File name patterns used for XML test file
package scan
(default="/**/*Test.xml,/**/*IT.xml")

CITRUS_JAVA_FILE_NAME_PATTERN File name patterns used for Java test sources
package scan
(default="/**/*Test.java,/**/*IT.java")

8.2. Application property file

As mentioned in the previous section Citrus as a framework references some basic settings from
system environment properties or variables. You can overwrite these settings in a central property
file which is loaded at the very beginning of the Citrus runtime. The properties in that file are

52

automatically loaded as Java system properties. Just add a property file named -citrus-
application.properties to your project classpath. This property file contains customized settings
such as:

citrus.spring.application.context=classpath*:citrus-custom-context.xml
citrus.spring.java.config=com.consol.citrus.config.MyCustomConfig
citrus.file.encoding=UTF-8

citrus.default.message.type=XML
citrus.xml.file.name.pattern=/**/*Test.xml, /**/*IT.xml

Citrus automatically loads these application properties at startup. All properties are also settable
with Java system properties. The location of the citrus-application.properties file is customizable
with the system property citrus.application.properties or environment variable
CITRUS_APPLICATION_PROPERTIES.

System.setProperty("citrus.application.properties”, "file:/custom/path/to/citrus-
application.properties")

Note

You can use classpath: and file: path prefix in order to give locate a classpath or file-system
resource.

8.3. Spring XML application context

Citrus starts a Spring application context and adds some default Spring bean components. By
default Citrus will load some internal Spring Java config classes defining those bean components. At
some point you might add some custom beans to that basic application context. This is why Citrus
will search for custom Spring application context files in your project. These are automatically
loaded.

By default Citrus looks for custom XML Spring application context files in this location:
classpath:citrus-context.xml* . So you can add a file named citrus-context.xml to your project
classpath and Citrus will load all Spring beans automatically.

The location of this file can be customized by setting a System property
citrus.spring.application.context . So you can customize the XML Spring application context file
location. The System property is settable with Maven surefire and failsafe plugin for instance or via
Java before the Citrus framework gets loaded.

See the following sample XML configuration which is a normal Spring bean XML configuration:

53

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:citrus="http://www.citrusframework.org/schema/config"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/config
http://www.citrusframework.org/schema/config/citrus-config.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<citrus:schema-repository id="schemaRepository" />

</beans>

Now you can add some Spring beans and you can use the Citrus XML components such as schema-
repository for adding custom beans and components to your Citrus project. Citrus provides several
namespaces for custom Spring XML components. These are described in more detail in the
respective chapters and sections in this reference guide.

You can also use import statements in this Spring application context in order to

load other configuration files. So you are free to modularize your configuration in
several files that get loaded by Citrus.

8.4. Spring Java config

Using XML Spring application context configuration is the default behavior of Citrus. However
some people might prefer pure Java code configuration. You can do that by adding a System
property citrus.spring.java.config with a custom Spring Java config class as value.

System.setProperty("citrus.spring.java.config", MyCustomConfig.class.getName())

Citrus will load the Spring bean configurations in MyCustomConfig.class as Java config then. See
the following example for custom Spring Java configuration:

54

import com.consol.citrus.TestCase;

import com.consol.citrus.report.*;

import org.s1f4j.Logger;

import org.s1f4j.LoggerFactory;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration
public class MyCustomConfig {

@Bean(name = "customTestListener")
public TestlListener customTestListener() {
return new PlusMinusTestReporter();

}

private static class PlusMinusTestReporter extends AbstractTestlListener implements
TestReporter {

/** Logger */
private Logger log = LoggerFactory.getlLogger(CustomBeanConfig.class);

private StringBuilder testReport = new StringBuilder();

@0verride
public void onTestSuccess(TestCase test) {
testReport.append("+");

}

@0verride
public void onTestFailure(TestCase test, Throwable cause) {
testReport.append("-");

}

@0verride
public void generateTestResults() {
log.info(testReport.toString());

}

@0verride
public void clearTestResults() {
testReport = new StringBuilder();

}

You can also mix XML and Java configuration so Citrus will load both configuration to the Spring
bean application context on startup.

55

Chapter 9. Endpoints

In one of the previous chapters we have discussed the basic test case structure as we introduced
variables and test actions . The <actions> section contains a list of test actions that take place
during the test case. Each test action is executed in sequential order by default. Citrus offers several
built-in test actions that the user can choose from to construct a complex testing workflow without
having to code everything from scratch. In particular Citrus aims to provide all the test actions that
you need as predefined components ready for you to use. The goal is to minimize the coding effort
for you so you can concentrate on the test logic itself.

Exactly the same approach is used in Citrus to provide ready-to-use endpoint component for
connecting to different message transports. There are several ways in an enterprise application to
exchange messages with some other application. We have synchronous interfaces like Http and
SOAP WebServices. We have asynchronous messaging with JMS or file transfer FTP interfaces.

Citrus provides endpoint components as client and server to connect with these typical message
transports. So you as a tester must not care about how to send a message to a JMS queue. The Citrus
endpoints are configured in the Spring application context and receive endpoint specific properties
like endpoint uri or ports or message timeouts as configuration.

The next figure shows a typical message sending endpoint component in Citrus:

send(Message)
Endpoint >

MessageDestination

The endpoint producer publishes messages to a destination. This destination can be a JMS
queue/topic, a SOAP WebService endpoint, a Http URL, a FTP folder destination and so on. The
producer just takes a previously defined message definition (header and payload) and sends it to
the message destination.

Similar to that Citrus defines the several endpoint consumer components to consume messages
from destinations. This can be a simple subscription on message channels and JMS queues/topics.
In case of SOAP WebServices and Http GET/POST things are more complicated as we have to
provide a server component that clients can connect to. We will handle server related
communication in more detail later on. For now the endpoint consumer component in its most
simple way is defined like this:

receive()

-~

MessageDestination

Endpoint

This is all you need to know about Citrus endpoints. We have mentioned that the endpoints are
defined in the Spring application context. Let’s have a simple example that shows the basic idea:

56

<citrus-jms:endpoint id="helloServiceEndpoint"
destination-name="Citrus.HelloService.Request.Queue"
connection-factory="myConnectionFactory"/>

This is a simple JMS endpoint component in Citrus. The endpoint XML bean definition follows a
custom XML namespace and defines endpoint specific properties like the JMS destination name and
the JMS connection factory. The endpoint id is a significant property as the test cases will reference
this endpoint when sending and receiving messages by its identifier.

In the next sections you will learn how a test case uses those endpoint components for producing
and consuming messages.

9.1. Send messages with endpoints

The <send> action in a test case publishes messages to a destination. The actual message transport
connection is defined with the endpoint component. The test case simply defines the message
contents and references a predefined message endpoint component by its identifier. Endpoint
specific configurations are centralized in the Spring bean application context while multiple test
cases can reference the endpoint to actually publish the constructed message to a destination.
There are several message endpoint implementations in Citrus available representing different
transport protocols like JMS, SOAP, HTTP, TCP/IP and many more.

Again the type of transport to use is not specified inside the test case but in the message endpoint
definition. The separation of concerns (test case/message sender transport) gives us a good
flexibility of our test cases. The test case does not know anything about connection factories, queue
names or endpoint uri, connection timeouts and so on. The transport internals underneath a
sending test action can change easily without affecting the test case definition. We will see later in
this document how to create different message endpoints for various transports in Citrus. For now
we concentrate on constructing the message content to be sent.

We assume that the message’s payload will be plain XML format. Citrus uses XML as the default
data format for message payload data. But Citrus is not limited to XML message format though; you
can always define other message data formats such as JSON, plain text, CSV. As XML is still a very
popular message format in enterprise applications and message-based solution architectures we
have this as a default format. Anyway Citrus works best on XML payloads and you will see a lot of
example code in this document using XML. Finally let us have a look at a first example how a
sending action is defined in the test.

57

XML DSL

<testcase name="SendMessageTest">
<description>Basic send message example</description>

<actions>
<send endpoint="helloServiceEndpoint">
<message>
<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</send>
</actions>
</testcase>

Now lets have a closer look at the sending action. The 'endpoint' attribute might catch your
attention first. This attribute references the message endpoint in Citrus configuration by its
identifier. As previously mentioned the message endpoint definition lives in a separate
configuration file and contains the actual message transport settings. In this example the
"helloServiceEndpoint" is referenced which is a JMS endpoint for sending out messages to a JMS
queue for instance.

The test case is not aware of any transport details, because it does not have to. The advantages are
obvious: On the one hand multiple test cases can reference the message endpoint definition for
better reuse. Secondly test cases are independent of message transport details. So connection
factories, user credentials, endpoint uri values and so on are not present in the test case.

In other words the "endpoint" attribute of the <send> element specifies which message endpoint
definition to use and therefore where the message should go to. Once again all available message
endpoints are configured in a separate Citrus configuration file. Be sure to always pick the right
message endpoint type in order to publish your message to the right destination.

If you do not like the XML language you can also use pure Java code to define the same test. In Java
you would also make use of the message endpoint definition and reference this instance. The same
test as shown above in Java DSL looks like this:

58

Java DSL designer

import org.testng.ITestContext;

import org.testng.annotations.Test;

import com.consol.citrus.annotations.CitrusTest;

import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class SendMessageTestDesigner extends TestNGCitrusTestDesigner {

@CitrusTest(name = "SendMessageTest")
public void sendMessageTest() {
description("Basic send message example");

send("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header ("Operation", "sayHello");

Instead of using the XML tags for send we use methods from TestNGCitrusTestDesigner class. The
same message endpoint is referenced within the send message action. The payload is constructed as
plain Java character sequence which is a bit verbose. We will see later on how we can improve this.
For now it is important to understand the combination of send test action and a message endpoint.

It is good practice to follow naming conventions when defining names for
message endpoints. The intended purpose of the message endpoint as well as the

Q sending/receiving actor should be clear when choosing the name. For instance
messageEndpointl, messageEndpoint2 will not give you much hints to the
purpose of the message endpoint.

This is basically how to send messages in Citrus. The test case is responsible for constructing the
message content while the predefined message endpoint holds transport specific settings. Test cases
reference endpoint components to publish messages to the outside world. This is just the start of
action. Citrus supports a whole package of other ways how to define and manipulate the message
contents. Read more about message sending actions in actions-send.

9.2. Receive messages with endpoints

Now we have a look at the message receiving part inside the test. A simple example shows how it
works.

59

#actions-send

XML DSL

<receive endpoint="helloServiceEndpoint">

<message>
<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</receive>

If we recap the send action of the previous chapter we can identify some common mechanisms that
apply for both sending and receiving actions. The test action also uses the endpoint attribute for
referencing a predefined message endpoint. This time we want to receive a message from the
endpoint. Again the test is not aware of the transport details such as JMS connections, endpoint uri,
and so on. The message endpoint component encapsulates this information.

Before we go into detail on validating the received message we have a quick look at the Java DSL
variation for the receive action. The same receive action as above looks like this in Java DSL.

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header("Operation", "sayHello");

The receive action waits for a message to arrive. The whole test execution is stopped while waiting
for the message. This is important to ensure the step by step test workflow processing. Of course
you can specify message timeouts so the receiver will only wait a given amount of time before
raising a timeout error. Following from that timeout exception the test case fails as the message did
not arrive in time. Citrus defines default timeout settings for all message receiving tasks.

At this point you know the two most important test actions in Citrus. Sending and receiving actions
will become the main components of your integration tests when dealing with loosely coupled
message based components in a enterprise application environment. It is very easy to create
complex message flows, meaning a sequence of sending and receiving actions in your test case. You
can replicate use cases and test your message exchange with extended message validation
capabilities. See actions-receive for a more detailed description on how to validate incoming
messages and how to expect message contents in a test case.

60

#actions-receive

9.3. Local message store

All messages that are sent and received during a test case are stored in a local memory storage. This
is because we might want to access the message content later on in a test case. We can do so by
using message store functions for loading messages that have been exchanged earlier in the test.
When storing a message in the local storage Citrus uses a message name as identifier key. This
message name is later on used to access the message. You can define the message name in any send
or receive action:

XML DSL

<receive endpoint="helloServiceEndpoint">
<message name="helloMessage">

<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</receive>

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.name("helloMessage")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")

.header ("Operation", "sayHello");

The receive operation above set the message name to helloMessage. The message received is
automatically stored in the local storage with that name. You can access the message content for
instance by using a function:

<echo>
<message>citrus:message(helloMessage.payload())</message>
</echo>

The function loads the helloMessage and prints the payload information with the echo test action.
In combination with Xpath or JsonPath functions this mechanism is a good way to access the
exchanged message contents later in a test case.

61

0 The storage is for both sent and received messages in a test case. The storage is
per test case and contains all sent and received messages.

When no explicit message name is given the local storage will construct a default message name.
The default name is built from the action (send or receive) plus the endpoint used to exchange the
message. For instance:

send(helloEndpoint)
receive(helloEndpoint)

The names above would be generated by a send and receive operation on the endpoint named
helloEndpoint.

The message store is not able to handle multiple message of the same name in
one test case. So messages with identical names will overwrite existing messages
in the local storage.

Now we have seen the basic endpoint concept in Citrus. The endpoint components represent the
connections to the test boundary systems. This is how we can connect to the system under test for
message exchange. And this is our main goal with this integration test framework. We want to
provide easy access to common message transports on client and server side so that we can test the
communication interfaces on a real message transport exchange.

62

Chapter 10. Message validation

When Citrus receives a message from external applications it is time to verify the message content.
This message validation includes syntax rules as well as semantic values that need to be compared
to an expected behavior. Citrus provides powerful message validation capabilities. Each incoming
message is validated with syntax and semantics. The tester is able to define expected message
headers and payloads. Citrus message validator implementations will compare the messages and
report differences as test failure. With the upcoming sections we have a closer look at message
validation of XML messages with XPath and XML schema validation and further message formats
like JSON and plaintext.

10.1. XML message validation

XML is a very common message format especially in the SOAP WebServices and JMS messaging
world. Citrus provides XML message validator implementations that are able to compare XML
message structures. The validator will notice differences in the XML message structure and
supports XML namespaces, attributes and XML schema validation. The default XML message
validator implementation is active by default and can be overwritten with a custom
implementation using the bean id defaultXmlMessageValidator .

<bean id="defaultXmlMessageValidator"
class="com.consol.citrus.validation.xml.DomXmlMessageValidator"/>

The default XML message validator is very powerful when it comes to compare XML structures. The
validator supports namespaces with different prefixes and attributes als well as namespace
qualified attributes. See the following sections for a detailed description of all capabilities.

10.1.1. XML payload validation

Once Citrus has received a message the tester can validate the message contents in various ways.
First of all the tester can compare the whole message payload to a predefined control message
template.

The receiving action offers following elements for control message templates:

<payload>

Defines the message payload as nested XML message template. The whole message payload is
defined inside the test case.

<data>

Defines an inline XML message template as nested CDATA. Slightly different to the payload
variation as we define the whole message payload inside the test case as CDATA section.

<resource>

Defines an expected XML message template via external file resources. This time the payload is
loaded at runtime from the external file.

63

Both ways inline payload definition or external file resource give us a control message template
that the test case expects to arrive. Citrus uses this control template for extended message
comparison. All elements, namespaces, attributes and node values are validated in this comparison.
When using XML message payloads Citrus will navigate through the whole XML structure
validating each element and its content. Same with JSON payloads.

Only in case received message and control message are equal to each other as expected the
message validation will pass. In case differences occur Citrus gives detailed error messages and the
test case fails.

The control message template is not necessarily very static. Citrus supports various ways to add
dynamic message content on the one side and on the other side Citrus can ignore some elements
that are not part of message comparison (e.g. when generated content or timestamps are part of the
message content). The tester can enrich the expected message template with test variables or ignore
expressions so we get a more robust validation mechanism. We will talk about this in the next
sections to come.

When using the Citrus Java DSL you will face a verbose message payload definition. This is because
Java does not support multiline character sequence values as Strings. We have to use verbose String
concatenation when constructing XML message payload contents for instance. In addition to that
reserved characters like quotes must be escaped and line breaks must be explicitly added. All these
impediments let me suggest to use external file resources in Java DSL when dealing with large
complex message payload data. Here is an example:

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.payload(new ClassPathResource
("com/consol/citrus/message/data/TestRequest.xml"))
.header("Operation", "sayHello")
.header ("MessageId", "${messageld}");

10.1.2. XML header validation

Now that we have validated the message payload in various ways we are now interested in
validating the message header. This is simple as you have to define the header name and the
control value that you expect. Just add the following header validation to your receiving action.

XML DSL

<header>
<element name="Operation" value="GetCustomer"/>
<element name="RequestTag" value="${requestTag}"/>
</header>

64

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.header ("Operation", "sayHello")
.header("MessageId", "${messageld}");

Message headers are represented as name-value pairs. Each expected header element identified by
its name has to be present in the received message. In addition to that the header value is
compared to the given control value. If a header entry is not found by its name or the value does
not fit accordingly Citrus will raise validation errors and the test case will fail.

Sometimes message headers may not apply to the name-value pair pattern. For
example SOAP headers can also contain XML fragments. Citrus supports these
kind of headers too. Please see the SOAP chapter for more details.

10.2. Ignore XML elements

Some elements in the message payload might not apply for validation at all. Just think of
communication timestamps an dynamic values inside a message:

The timestamp value in our next example will dynamically change from test run to test run and is
hardly predictable for the tester, so lets ignore it in validation.

XML DSL
<message>
<payload>
<TestMessage>
<Messageld>${messageld}</Messageld>
<Timestamp>2001-12-17T09:30:47.0Z</Timestamp>
<VersionId>@ignore@</VersionId>
</TestMessage>
</payload>
<ignore path="/TestMessage/Timestamp"/>
</message>

Although we have given a static timestamp value in the payload data the element is ignored during
validation as the ignore XPath expression matches the element. In addition to that we also ignored
the version id element in this example. This time with an inline @ignore@ expression. This is for
those of you that do not like XPath. As a result the ignored message elements are automatically
skipped when Citrus compares and validates message contents and do not break the test case.

When using the Java DSL the @ignore@ placeholder as well as XPath expressions can be used
seamlessly. Here is an example of that:

65

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.payload(new ClassPathResource
("com/consol/citrus/message/data/TestRequest.xml"))
.header ("Operation", "sayHello")
.header ("MessageId", "${messageId}")
.ignore("/TestMessage/Timestamp");

Of course you can use the inline @